Asian Surveying & Mapping
Breaking News
Building in Bangkok collapses as powerful earthquake hits southeast Asia
One person has died and 50 were injured in...
Bellatrix Aerospace Partners with Astroscale Japan for Space Debris Removal
Bellatrix Aerospace, a Bengaluru-based space mobility company, has joined...
NSTC announces Pingtung site as Taiwan’s space mission launch center
Taipei, March 26 (CNA) Taiwan's National Science and Technology...
ISRO-NASA mission to send Indian astronaut to ISS faces budget cut
New Delhi: The ISRO-NASA mission to send an Indian...
China launches new data relaying satellite into space
China successfully launched a new data relaying satellite into...
China unveils first homegrown space mining robot
China's first space mining robot has been developed by...
North Korea rejects G7 call for denuclearization, vows to ‘strengthen’ nuclear forces
North Korea on Monday vowed to "steadily update and...
Taiwan showcases innovative technologies at Satellite 2025
Innovative technologies are on display at the Taiwan Space...
Japanese Astronaut Onishi departs with three others for 2nd Space Mission
Takuya Onishi has left for space for his second...
Saudi Arabia, Korea Sign Memorandum of Cooperation to Enhance Space Collaboration
Riyadh, SPA: The Saudi Space Agency (SSA) today signed...

May 16th, 2007
Virtually Offshore

Whatever the reason, records kept during the initial construction phase are usually outdated. Refits planned using this data can lead to alterations while the rework is underway, causing delays and increased costs.

Laser scanners are the answer. A typical scanner, such as the Laser Scanner LS from Faro Technologies, is small enough to be flown out to an offshore oil rig by helicopter. At a capture rate of 120,000 points per second, it produces a 360¡ horizontal and 320¡ vertical of 27 million points after only seven minutes.

This cloud of data points generates a virtual 3D photograph in black and white, or in colour. Many scans can be registered together to give a representation of the entire facility, which can be walked through virtually.

Faro’s LS emits an infrared beam into the centre of a rotating mirror. The mirror deflects the laser around the environment being scanned. The laser scanner captures the reflected beam and measures the ‘phase shift’ of the infrared light. The difference in the laser phases allows the on board PC to calculate the distance of the laser from the object. When combined with two encoder readings measuring horizontal and vertical rotation, the x, y, and z co-ordinates of the reflection can be measured.

The addition of recently improved ‘colour option’ software enables scans to be coloured with almost zero parallax error, adding another dimension to the realism of the images. It is particularly useful where pipe colours indicate what they contain.

Once captured, the laser scan is shown on a PDA or laptop inside Faro Scene software, showing all the captured information. Settings for the scan resolution and speed can be altered, and with the click of one button the scanner can proceed with the next scan.

The software creates order and intelligence in the data, and gives planners, engineers and surveyors easier access to the required information.

Headlines