Asian Surveying & Mapping
Breaking News
News Dubai Loop: A new underground project will change travel in Dubai
Say goodbye to sitting in Sheikh Zayed Road traffic:...
PM Modi Says ISRO, NASA’s Satellite Will Soon Fly Into Space
During his recent visit to the United States, Prime...
China wants Bangladesh to rewrite geography, alter India’s map
China is back at it again. According to reports,...
Japan launches navigation satellite on nation’s 1st mission of 2025
An H3 rocket launched the Michibiki 6 spacecraft from Tanegashima Space Center...
China builds space alliances in Africa as Trump cuts foreign aid
China has forged nearly two-dozen pacts with African nations...
Isro tests Gaganyaan communications with ESA ground station network
The Indian Space Research Organisation (Isro) has achieved a ...
Russian, US Envoys Meet ISRO Chairman
Ahead of Prime Minister Narendra D Modi's meeting United...
IIT Madras, ISRO develop indigenous aerospace micro processor to aid space technologies
Indian Institute of Technology (IIT) Madras and ISRO have...
Geo Connect Asia expands its regional footprint
London & Singapore – The 5th edition of Geo...
Advanced Navigation to develop precision navigation for Gilmour Space rocket launches
United States, February 3, 2025 - Advanced Navigation, a...

When NASA and the Indian Space Research Organization’s (ISRO) new Earth satellite NISAR (NASA-ISRO Synthetic Aperture Radar) launches in coming months, it will capture images of Earth’s surface so detailed they will show how much small plots of land and ice are moving, down to fractions of an inch. Imaging nearly all of Earth’s solid surfaces twice every 12 days, it will see the flex of Earth’s crust before and after natural disasters such as earthquakes; it will monitor the motion of glaciers and ice sheets; and it will track ecosystem changes, including forest growth and deforestation. The spacecraft, depicted here in an artist’s concept, will launch from India. 

The mission’s extraordinary capabilities come from the technique noted in its name: synthetic aperture radar (SAR). Pioneered by NASA for use in space, SAR combines multiple measurements, taken as a radar flies overhead, to sharpen the scene below. It works like conventional radar, which uses microwaves to detect distant surfaces and objects, but steps up the data processing to reveal properties and characteristics at high resolution. 

To get such detail without SAR, radar satellites would need antennas too enormous to launch, much less operate. At 39 feet (12 meters) wide when deployed, NISAR’s radar antenna reflector is as wide as a city bus is long. Yet it would have to be 12 miles (19 kilometers) in diameter for the mission’s L-band instrument, using traditional radar techniques, to image pixels of Earth down to 30 feet (10 meters) across.

Image Credit: NASA/JPL-Caltech