Asian Surveying & Mapping
Breaking News
New digital twin to better plan, design and manage Australia’s cities
A cutting edge 3D visualisation of Western Sydney was...
NRL’s remote sensing division analyzes ground characteristics in Australia
WASHINGTON — U.S. Naval Research Laboratory physical scientists, engineers,...
Google Maps tests swapping Commute for Go in new five-tab menu
Google’s popular mapping service turned 15 last week, and...
Japan’s mission to explore Mars’ moons gets a green light
Japan is moving ahead with plans to land a...
Four New Chinese Beidou GNSS Satellites Declared Operational
Four new satellites for the Chinese BeiDou Navigation Satellite...
ISRO satellite to guard India’s borders soon; Satellite launch in March this year
Indian Space Research Organisation ISRO is all set to...
European Space Agency and Galileo Services to Discuss European GNSS at Military PNT 2020
London, United Kingdom - On May 18-19, 2020, SMi...
Timing center to protect UK from risk of satellite failure
The UK’s emergency service responders and other critical services...
Space agency HQ launch fuels industry momentum in Adelaide
More than 1000 space leaders including NASA representatives and...
Satellite group targets bushfire disaster and clean water
Bushfire disasters and satellite water monitoring are crucial targets...

According to information obtained from the Indian Space Research Organisation (ISRO) Chandrayaan-2 Dual-Frequency Synthetic Aperture Radar (DF-SAR) satellite, the moon has been continuously bombarded by meteorites, asteroids and comets since its formation. This has resulted in the formation of innumerable impact craters that form the most distinct geographic features on its surface. 

Previous lunar-orbiting SAR systems—such as the S-band hybrid-polarimetric SAR on ISRO’s Chandrayaan-1 and the S & X-band hybrid-polarimetric SAR on NASA’s LRO—provided valuable data on the scattering characterization of ejecta materials of lunar impact craters. However, the L & S band SAR on Chandraayan-2 is designed to produce greater details about the morphology and ejecta materials of impact craters due to its ability of imaging with higher resolution (2 – 75-meter slant range) and full-polarimetric modes in standalone as well as joint modes in S and L-band with a wide range of incidence angle coverage (9.5° – 35°). In addition, the greater depth of penetration of L-band (3-5 meters) enables probing the buried terrain at greater depths. The L & S band SAR payload helps in unambiguously identifying and quantitatively estimating the lunar polar water-ice in permanently shadowed regions.

The accompanying figure is one of the first datasets acquired over lunar south polar regions in L-band high-resolution (2-meter slant-range resolution) hybrid polarimetric mode. This image presents many interesting facts about the secondary craters of different ages and origins in the lunar south polar region. The yellowish tone around crater rims in the image shows ejecta fields. The distribution of ejecta fields, whether uniformly distributed in all directions or oriented toward a particular side of a crater, indicates the nature of the impact. The image shows craters of vertical impact and oblique impact on the top-right and bottom-right, respectively. Similarly, the roughness of the ejecta materials associated with the impact craters indicates the degree of weathering a crater has undergone. Three similar-sized craters along a row on the bottom-right of the image show examples of young crater, moderately weathered crater and an old degraded crater. Many of the ejecta fields seen in the image are not visible in high-resolution optical images over the same region, indicating the ejecta fields are buried beneath regolith layers.