Asian Surveying & Mapping
Breaking News
NASA maps Beirut explosion damage from space with satellites
A NASA team, using data from a European satellite...
DM adopts geospatial data in support of UN Sustainable Development Goals 2030
DUBAI - The Dubai Municipality has adopted the geospatial...
SpaceX launches 57 satellites for its Starlink network
The U.S. space company, SpaceX, on Friday launched 57...
Isro data from remote sensing satellites helped raise crop output: minister
The Indian Space Research Organisation (Isro)'s technology is no...
China is ready to challenge US domination in the world of navigation and mapping
Covid-19 may have left roads around the globe barren...
NASA research to be conducted at Rome drone test site
ROME, N.Y. – Oneida County has received nearly $900,000...
Nigeria signs MoU with India on space cooperation
Nigeria and the Indian Government have signed a Memorandum...
UAE celebrates 11th launch anniversary of DubaiSat-1
The UAE is celebrating the 11th anniversary of the...
UAE starts rush of missions to Mars looking for signs of life
A United Arab Emirates spacecraft has rocketed into space...
Turkey’s Lake Salda may yield answers for life on Mars
Similarities between a lake in southwestern Turkey and the...
  • Oct 29, 2019
  • Comments Off on Initial Imaging and Observations from India’s Chandrayaan-2 Satellite
  • Feature
  • 378 Views

According to information obtained from the Indian Space Research Organisation (ISRO) Chandrayaan-2 Dual-Frequency Synthetic Aperture Radar (DF-SAR) satellite, the moon has been continuously bombarded by meteorites, asteroids and comets since its formation. This has resulted in the formation of innumerable impact craters that form the most distinct geographic features on its surface. 

Previous lunar-orbiting SAR systems—such as the S-band hybrid-polarimetric SAR on ISRO’s Chandrayaan-1 and the S & X-band hybrid-polarimetric SAR on NASA’s LRO—provided valuable data on the scattering characterization of ejecta materials of lunar impact craters. However, the L & S band SAR on Chandraayan-2 is designed to produce greater details about the morphology and ejecta materials of impact craters due to its ability of imaging with higher resolution (2 – 75-meter slant range) and full-polarimetric modes in standalone as well as joint modes in S and L-band with a wide range of incidence angle coverage (9.5° – 35°). In addition, the greater depth of penetration of L-band (3-5 meters) enables probing the buried terrain at greater depths. The L & S band SAR payload helps in unambiguously identifying and quantitatively estimating the lunar polar water-ice in permanently shadowed regions.

The accompanying figure is one of the first datasets acquired over lunar south polar regions in L-band high-resolution (2-meter slant-range resolution) hybrid polarimetric mode. This image presents many interesting facts about the secondary craters of different ages and origins in the lunar south polar region. The yellowish tone around crater rims in the image shows ejecta fields. The distribution of ejecta fields, whether uniformly distributed in all directions or oriented toward a particular side of a crater, indicates the nature of the impact. The image shows craters of vertical impact and oblique impact on the top-right and bottom-right, respectively. Similarly, the roughness of the ejecta materials associated with the impact craters indicates the degree of weathering a crater has undergone. Three similar-sized craters along a row on the bottom-right of the image show examples of young crater, moderately weathered crater and an old degraded crater. Many of the ejecta fields seen in the image are not visible in high-resolution optical images over the same region, indicating the ejecta fields are buried beneath regolith layers.