Asian Surveying & Mapping
Breaking News
Satellite mission launched to boost Australian space sovereignty
Led by the SmartSat Cooperative Research Centre (CRC), the AUD$6.5 million...
Earth Observation Data Could Represent A Billion-Dollar Opportunity For Africa
Earth observation data provides a billion-dollar opportunity for...
Hanwha Aerospace claims 30% stake in Satrec Initiative
SAN FRANCISCO – Hanwha Aerospace, South Korea’s largest defense...
Israeli Startup Albo Takes On Carbon Monitoring With AI, Satellite Imaging
Businesses, governments, NGOs, and private sector individuals continue to...
Imran Khan inaugurates E-Bidding, E-Billing, GIS Mapping system under NHA
ISLAMABAD (Dunya News) - Prime Minister Imran Khan formally...
Sheikh Mohammed inaugurates Dewa’s space project
An initiative to build the Dubai Electricity and Water...
Indian Army signs a $20 million contract with ideaForge to procure SWITCH UAV
MUMBAI, India - The Indian Army has signed an...
Egypt’s President Wants Tiba-1 Satellite to Revolutionize Communications and IT Sector in Egypt
President Abdel Fattah El-Sisi met yesterday with Dr Amr...
ISRO Offers Free Online Course On Remote Sensing, With Certificate: How To Apply
The Indian Space Research Organisation (ISRO) is inviting undergraduate...
PwC selected as consultant for Bangabandhu-2 satellite
The government has selected PricewaterhouseCoopers (PwC) as the consultant...
  • Jul 30, 2019
  • Comments Off on Researchers from University of Adelaide Win Global Pose Estimation Challenge
  • Feature
  • 448 Views

The team of researchers from the University of Adelaide’s Australian Institute for Machine Learning (AILM) defeated 47 other universities and space technology companies at the international space competition hosted by the European Space Agency.

The South Australian team—including Associate Professor Tat-Jun Chin, Dr. Bo Chen and Dr. Alvaro Parra Bustos—won the challenge to determine the most accurate orientation of an object in space by using machine learning and 3D vision algorithms.

Teams were given individual high-fidelity images of the Tango spacecraft from the 2016 PRISMA mission and were required to determine the orientation of the craft in relation to the observer from close rendezvous.

The goal of the challenge was to estimate the pose—the relative position and attitude—of a known spacecraft in order to help future space missions.

Knowing the exact pose enables the development of debris-removal technologies, refurbishment of expensive space assets, and the development of space depots to facilitate travel toward distant destinations.