Asian Surveying & Mapping
Breaking News
Esri India Achieves 1 Million Users Milestone
Esri India, the leading provider of Geographic Information System...
Bank Negara, Malaysian Space Agency to bolster financial management ecosystem via space technology
KUALA LUMPUR: Bank Negara Malaysia has partnered with the...
Nepal’s president advisor resigns after criticising inclusion of Indian areas in map on new currency
The economic advisor to Nepal’s president on Sunday (May...
TASA to launch six satellites from 2026
The Taiwan Space Agency (TASA) yesterday said it plans...
Japan to provide flood risk maps for four South-East Asian countries – Indonesia, Vietnam, Thailand and Cambodia
JAKARTA/TOKYO: Japan plans to start providing flood risk maps...
Ecolab and ITE partners to harness water management knowledge for Singapore data center engineers
SINGAPORE, 29 APRIL 2024 – Nalco Water, an Ecolab...
NASA releases satellite photos of Dubai and Abu Dhabi before and after record flooding
NASA released photos of parts of Dubai and Abu...
Singapore releases 10-year Geospatial Master Plan
Singapore has launched its new Geospatial Master Plan (2024–33),...
Japan announces plans to launch upgraded observation satellites on new flagship rocket’s 3rd flight
TOKYO (AP) — Japan’s space agency announced Friday a...
Tesla China partners with Baidu for maps to clear FSD hurdle
Amidst Elon Musk’s unannounced trip to Beijing, China this...
  • Jul 23, 2019
  • Comments Off on IR Detector Onboard Chandrayaan-2 Expedition to Moon’s South Pole 
  • Feature
  • 783 Views

Chandrayaan-2 launched on July 22, 2019, from the Satish Dhawan Space Centre in India, and is one of the most-complex missions to date for the Indian Space Research Organization (ISRO), as it will be the first to explore the Moon’s south polar region, the territory farthest from the Moon’s equator.

The Chandrayaan-2 weighs 3,877 kilograms. The payload includes 11 instruments, one of which is an imaging IR spectrometer (IIRS) designed with Lynred’s IR detector, called Neptune. It will conduct a more indepth onsite chemical analysis of the Moon and detection of minerals, water molecules and hydroxyl (containing oxygen and hydrogen atoms, also called hydroxyl radical, OH). Since water is essential for life to function on Earth, the composition of the water-ice on the surface and subsurface and its origin are important objects of study for future space exploration and travel. The orbiter is expected to be in orbit of the Moon for one year.