Asian Surveying & Mapping
Breaking News
HAL to build, market Isro’s SSLV in landmark deal
New Delhi, Jun 20: In a historic move for...
Taiwan developing space capabilities for all-weather imaging
TAIPEI (TVBS News) — Taiwan is advancing its space...
Honda hails successful test of reusable rocket as it looks to get into the space business
Tokyo — Japan's second-biggest carmaker, Honda, has successfully tested...
China’s space program provides larger platform for broader international cooperation
BEIJING -- Experts from China's manned space program said...
India To Launch $1.5 Billion Joint Earth Mission With NASA In July
National Aeronautics and Space Administration (NASA) and the Indian...
Axiom-4 mission delayed again: ISRO confirms Subhanshu Shukla’s ISS spaceflight won’t launch before 22 June 2025
The Axiom-4 mission to the International Space Station has...
Mengzhou spacecraft for China’s moon-landing mission passes landmark test flight
China has completed the inaugural test flight of its...
Space application for ITMA Asia + CITME 2026 opens
Shanghai – Space application for the 2026 edition of...
Yanmar, Chia Tai and XAG Empower Thai Agriculture through Innovation
Bang Nam Priao District, Chachoengsao Province, Thailand – On...
bitsensing Signs MOU with IKIO Technologies to Advance AI-Based Traffic Monitoring on India’s Expressways, Highways and Municipal Areas
Backed by proven success in South Korea and Europe,...

The GNSS-Reflectometry (GNSS-R) instrument on the EOS-08 satellite commenced operations on Aug. 18, 2024. The raw data is being processed at the National Remote Sensing Centre (NRSC-ISRO) in Shadnagar, Hyderabad, using algorithms and data processing software developed by the Space Applications Centre (SAC-ISRO), Ahmedabad. Multiple levels of data products have been successfully generated. 

GNSS-Reflectometry represents a new mode of remote sensing. Signals from Global and Regional Navigation Satellite Systems (GNSS/RNSS), such as GPS and NavIC, are reflected off various Earth surfaces, including oceans, agricultural lands and river bodies. These reflected signals are collected by a precision receiver onboard the satellite (see accompanying figure) as it orbits the Earth at an altitude of 475 kilometers. This measurement system operates without dedicated transmitters and is shallow in resource consumption—requiring minimal size, weight and power. Additionally, it can scale up as a constellation of receivers for faster coverage, making this innovative remote-sensing mode highly useful. 

Image Credit: ISRO