Asian Surveying & Mapping
Breaking News
HAL to build, market Isro’s SSLV in landmark deal
New Delhi, Jun 20: In a historic move for...
Taiwan developing space capabilities for all-weather imaging
TAIPEI (TVBS News) — Taiwan is advancing its space...
Honda hails successful test of reusable rocket as it looks to get into the space business
Tokyo — Japan's second-biggest carmaker, Honda, has successfully tested...
China’s space program provides larger platform for broader international cooperation
BEIJING -- Experts from China's manned space program said...
India To Launch $1.5 Billion Joint Earth Mission With NASA In July
National Aeronautics and Space Administration (NASA) and the Indian...
Axiom-4 mission delayed again: ISRO confirms Subhanshu Shukla’s ISS spaceflight won’t launch before 22 June 2025
The Axiom-4 mission to the International Space Station has...
Mengzhou spacecraft for China’s moon-landing mission passes landmark test flight
China has completed the inaugural test flight of its...
Space application for ITMA Asia + CITME 2026 opens
Shanghai – Space application for the 2026 edition of...
Yanmar, Chia Tai and XAG Empower Thai Agriculture through Innovation
Bang Nam Priao District, Chachoengsao Province, Thailand – On...
bitsensing Signs MOU with IKIO Technologies to Advance AI-Based Traffic Monitoring on India’s Expressways, Highways and Municipal Areas
Backed by proven success in South Korea and Europe,...

If a two-year trial of Satellite Based Augmentation Systems (SBAS) being undertaken with the backing of the Australian and New Zealand governments proves successful, position fixing could become more precise than the several-meters accuracy provided by Global Positioning System (GPS) satellites.

SBAS uses a continent-wide network of fixed GPS or other satnav system receivers in locations that are known with great accuracy. These are able to measure the error in the GPS position and communicate that to a central processing center. Correctional information is computed and relayed via geostationary satellites to individual users to increase the accuracy of GPS-derived positions.

New Zealand’s minister for economic development and minister of transport, Simon Bridges, said SBAS was expected to improve air navigation, smartphone-based services, asset management and precision agriculture, and would be needed for the deployment of connected and autonomous vehicles.

“This is a world-leading trial that will allow us to investigate how New Zealand might benefit from the added precision SBAS adds to current and future global navigation satellite systems,” he said.

“While current GPS locations are accurate to within 5 to 10 metres, the SBAS testbed could improve positioning to within as little as 10 centimeters,” added Bridges. “This means that a vehicle will recognize the road it is travelling on, but also which lane it is in and its distance from surrounding objects.”

Satellite communications for the project are being provided by Inmarsat, a global satellite network operator that dedicated a transponder on its L-band Asia Pacific region satellite, Inmarsat-4 F1, to provide the satellite link that will communicate correction information to individual GPS receivers.

Lockheed Martin will provide systems integration expertise, along with the radio frequency uplink station, and GMV (Spain), one of the leading suppliers of satellite ground-segment equipment, will be responsible for the provision of magicSBAS—a state-of-the-art, multi-constellation, operational SBAS processor to generate the GNSS augmentation message.

 

Geoscience Australia is working with the Cooperative Research Centre for Spatial Information to evaluate the effectiveness of an SBAS for Australia as well as build expertise within government and industry on its transformative benefits.