Asian Surveying & Mapping
Breaking News
HAL to build, market Isro’s SSLV in landmark deal
New Delhi, Jun 20: In a historic move for...
Taiwan developing space capabilities for all-weather imaging
TAIPEI (TVBS News) — Taiwan is advancing its space...
Honda hails successful test of reusable rocket as it looks to get into the space business
Tokyo — Japan's second-biggest carmaker, Honda, has successfully tested...
China’s space program provides larger platform for broader international cooperation
BEIJING -- Experts from China's manned space program said...
India To Launch $1.5 Billion Joint Earth Mission With NASA In July
National Aeronautics and Space Administration (NASA) and the Indian...
Axiom-4 mission delayed again: ISRO confirms Subhanshu Shukla’s ISS spaceflight won’t launch before 22 June 2025
The Axiom-4 mission to the International Space Station has...
Mengzhou spacecraft for China’s moon-landing mission passes landmark test flight
China has completed the inaugural test flight of its...
Space application for ITMA Asia + CITME 2026 opens
Shanghai – Space application for the 2026 edition of...
Yanmar, Chia Tai and XAG Empower Thai Agriculture through Innovation
Bang Nam Priao District, Chachoengsao Province, Thailand – On...
bitsensing Signs MOU with IKIO Technologies to Advance AI-Based Traffic Monitoring on India’s Expressways, Highways and Municipal Areas
Backed by proven success in South Korea and Europe,...
  • Jan 30, 2023
  • Comments Off on Synchronized LiDAR and Bathymetric Surveying Methods to Study a Floating Solar Farm in Israel
  • Feature
  • 967 Views

The synchronization was performed upon a request from the Israeli drone service provider ERELIS to conduct a pilot project of reservoir surveying with a UAV for ETZ HADEKEL Ltd. in Northern Israel. The surface of the reservoir is covered by solar panels, which made it difficult to carry out work using standard methods of surveying from a boat. 

ERELIS performed two-stage drone surveying to deliver a high-precision 3D model of the reservoir. First, aerial photogrammetry and LiDAR surveys were performed using a DJI M300 drone equipped with a TOPODRONE camera P61 and a LiDAR HI-RES system to determine the location of possible obstacles. LiDAR scanning provided accurate detection of cables in the water.

Second, an underwater bathymetric survey using a TOPODRONE AQUAMAPPER mounted to the same drone was conducted avoiding detected obstacles (cables, solar panels and other objects). The flight mission was planned and executed with the UgCS software by SPH Engineering.

The collected LiDAR & bathymetry data was processed by TOPODRONE Post Processing software. As a result, a georeferenced orthophoto map, a 3D model of the relief and objects, a 3D model of the bottom of the reservoir, contour lines and isobaths were generated. Such 3D models can be used for high-precision assessment of sediment volumes, general monitoring of reservoir banks and visual monitoring. In addition, surveying with a TOPODRONE AQUAMAPPER made it possible to estimate sludge deposits of the reservoir. 

Image Credit: TOPODRONE