Asian Surveying & Mapping
Breaking News
Australia’s Gilmour Space Technologies ready to launch maiden Eris Test flight the nation’s first orbital launch in over 50 years
Gilmour Space Technologies is the leading launch services company...
Korea’s space agency seeks revision of plan to modify next-gen rockets into reusable system
South Korea's aerospace agency said on Thursday that it...
UAE Space Agency Signs Agreement With Technology Innovation Institute to Execute the Emirates Mission to the Asteroid Belt’s Lander Project
In the presence of His Highness Sheikh Hamdan bin...
Private Japanese lunar lander enters orbit around moon ahead of a June touchdown
A private lunar lander from Japan is now circling the moon, with...
Indian astronaut to travel soon to ISS as part of ISRO-NASA Mission
Prime Minister Narendra Modi said by 2040, an Indian’s...
China issues regulatory framework to support direct-to-device satellite services
HELSINKI — China has released comprehensive regulations for direct-to-device...
Astranis clinches $115 million Taiwan deal despite satellite setback
TAMPA, Fla. — Astranis has signed a $115 million...
UAE and Egypt Strengthen Space Collaboration with New MoU
In a milestone development for Arab space collaboration, the...
Seoul launches 4th spy satellite to boost North Korea surveillance
South Korea’s military now operates an increasingly integrated cluster...
Indonesia seeks space defense cooperation with Japan’s military
Jakarta (ANTARA) - The Ministry of Defense of Indonesia...
  • Jan 30, 2023
  • Comments Off on Synchronized LiDAR and Bathymetric Surveying Methods to Study a Floating Solar Farm in Israel
  • Feature
  • 912 Views

The synchronization was performed upon a request from the Israeli drone service provider ERELIS to conduct a pilot project of reservoir surveying with a UAV for ETZ HADEKEL Ltd. in Northern Israel. The surface of the reservoir is covered by solar panels, which made it difficult to carry out work using standard methods of surveying from a boat. 

ERELIS performed two-stage drone surveying to deliver a high-precision 3D model of the reservoir. First, aerial photogrammetry and LiDAR surveys were performed using a DJI M300 drone equipped with a TOPODRONE camera P61 and a LiDAR HI-RES system to determine the location of possible obstacles. LiDAR scanning provided accurate detection of cables in the water.

Second, an underwater bathymetric survey using a TOPODRONE AQUAMAPPER mounted to the same drone was conducted avoiding detected obstacles (cables, solar panels and other objects). The flight mission was planned and executed with the UgCS software by SPH Engineering.

The collected LiDAR & bathymetry data was processed by TOPODRONE Post Processing software. As a result, a georeferenced orthophoto map, a 3D model of the relief and objects, a 3D model of the bottom of the reservoir, contour lines and isobaths were generated. Such 3D models can be used for high-precision assessment of sediment volumes, general monitoring of reservoir banks and visual monitoring. In addition, surveying with a TOPODRONE AQUAMAPPER made it possible to estimate sludge deposits of the reservoir. 

Image Credit: TOPODRONE