Asian Surveying & Mapping
Breaking News
Thailand to launch its second Earth satellite next week
Thailand is set to launch it second Earth observation...
Chinese launch startup’s rocket fails during satellite launch
The Chinese launch company Galactic Energy suffered its first...
First Hong Kong-made satellite set to launch in November from Guangdong province, company reveals
The first Hong Kong-made satellite is set to be...
China launches Yaogan 39 remote sensing satellite
China launched a Long March 2D carrier rocket on...
Saudi Arabia publishes maps with new names for ceded islands
A new map published by Saudi Arabia’s General Authority...
US, Saudi Arabia conclude region’s largest-ever counter-UAS exercise
The US and Saudi Arabia conducted the largest-ever counter-UAS exercise...
Study improves accuracy of planted forest locations in East Asia
An international team led by Purdue University scientists has...
Iran, Russia Working On Joint Research Spacecraft
In an interview with Tasnim, the president of the...
France, Bangladesh sign deal to provide loans, satellite technology during Macron’s visit to Dhaka
French President Emmanuel Macron witnessed the signature of a...
Iran, Russia Working on Joint Research Spacecraft
TEHRAN (Tasnim) – Top universities from Iran and Russia...
Although solar energy sources are located at the core of the Sun, the temperature of the upper part of the solar atmosphere (i.e., chromosphere and corona) is higher than that of the visible surface (i.e., photosphere). The mechanisms that produce such a peculiar behavior are still a mystery for solar researchers.

A Japanese research team tried to tackle this for the first time, evaluating how much energy is dissipated at the chromosphere through waves. Results show that the amount of dissipated energy is 10 times larger than the required energy to maintain the chromosphere. Therefore, waves could be responsible for heating the upper chromosphere up to its present values (i.e., 10,000 Kelvin).

This discovery was found thanks to an international collaboration among Japanese and U.S. solar-observing satellites. The Hinode mission revealed tiny fluctuations of physical parameters through spectropolarimetric observations, and the IRIS (Interface Region Imaging Spectrograph) performed spectroscopic observations to derive physical information of the upper chromosphere. The combination of these satellites made it possible to evaluate dissipated energy by comparing the energy fluxes obtained at the two atmospheric layers.

Hinode and IRIS satellites helped discover that the dynamic solar chromosphere could be heated and formed by dissipation of energy of waves. (Credit:  NAOJ/JAXA)

Hinode and IRIS satellites helped discover that the dynamic solar chromosphere could be heated and formed by dissipation of energy of waves. (Credit: NAOJ/JAXA)