Asian Surveying & Mapping
Breaking News
Australia’s Gilmour Space Technologies ready to launch maiden Eris Test flight the nation’s first orbital launch in over 50 years
Gilmour Space Technologies is the leading launch services company...
Korea’s space agency seeks revision of plan to modify next-gen rockets into reusable system
South Korea's aerospace agency said on Thursday that it...
UAE Space Agency Signs Agreement With Technology Innovation Institute to Execute the Emirates Mission to the Asteroid Belt’s Lander Project
In the presence of His Highness Sheikh Hamdan bin...
Private Japanese lunar lander enters orbit around moon ahead of a June touchdown
A private lunar lander from Japan is now circling the moon, with...
Indian astronaut to travel soon to ISS as part of ISRO-NASA Mission
Prime Minister Narendra Modi said by 2040, an Indian’s...
China issues regulatory framework to support direct-to-device satellite services
HELSINKI — China has released comprehensive regulations for direct-to-device...
Astranis clinches $115 million Taiwan deal despite satellite setback
TAMPA, Fla. — Astranis has signed a $115 million...
UAE and Egypt Strengthen Space Collaboration with New MoU
In a milestone development for Arab space collaboration, the...
Seoul launches 4th spy satellite to boost North Korea surveillance
South Korea’s military now operates an increasingly integrated cluster...
Indonesia seeks space defense cooperation with Japan’s military
Jakarta (ANTARA) - The Ministry of Defense of Indonesia...

June 24th, 2010
Remote Sensing Provides New Tools for Earthquake Assessment and Prediction

A science team at NASAs Jet Propulsion Laboratory in California has been using the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) to measure surface deformation from earthquakes. The radar produces map images that are called interferograms that show ground motion and increased strain along fault lines.

By comparing imagery collected over time, the scientists are able to better understand the complex geology of these regions. Through continued observation, particularly after a quake event, the scientists can determine how strain alters across a fault line, and can help determine if massing of strain along the fault is occurring, priming them to break. The UAVSAR sensor shows details at a much finer granularity than any other type of sensor.

Interesting research is taking place throughout the world to help determine a reliable precursor for earthquake detection:

  • The China Institute for Remote Sensing Applications (IRSA) is studying the possibility of earthquake signal detection through the use of space and ground observation technology in the microwave spectrum. Dr. Yun Shao is the Director of the Microwave Research Division at IRSA, and has been exploring the use of multi-temporal Synthetic Aperture Radar (SAR) and microwave scatterometer (QSCAT and ASCAT) data to help predict the potential for earthquakes.
  • Researchers in India have been studying the use of thermal remote sensing instruments to determine if heat transfer is a reliable earthquake precursor.
  • A plan to study the electrical disturbance in the atmosphere that occurs prior to an earthquake is also underway. Surrey Satellite Technology Limited proposes a constellation of 20 satellites to monitor this warning signal from space, claiming that the electrical charge that occurs as pressure builds up for a quake can be detected weeks in advance.

Clearly, there are promising remote sensing technologies that will not only help us assess the damage from earthquake events, but also to predict and help mitigate their damage.