Asian Surveying & Mapping
Breaking News
Neo Space Group Completes Acquisition of UP42 from Airbus Defence and Space
Neo Space Group (NSG) has officially finalized its acquisition...
Launch of Australia’s 1st orbital rocket, Gilmour Space’s Eris-1, delayed again
Update for 6:15 p.m. ET on July 1: Gilmour Space...
SAASST, UAE Space Agency strengthen scientific partnership
SHARJAH- Prof. Hamid M.K. Al Naimiy, Director of the...
Shubhanshu Shukla to speak to students and ISRO scientists this Friday
Indian astronaut Shubhanshu Shukla will interact with school students...
ISRO hands over 10 advanced technologies to Indian firms in major push for space commercialisation
The Indian Space Research Organisation (ISRO) has transferred ten...
DIGIPIN Launched: India Embraces Geospatial Precision in Digital Addressing
IIT Hyderabad (IITH), in partnership with the Department of...
HAL to build, market Isro’s SSLV in landmark deal
New Delhi, Jun 20: In a historic move for...
Taiwan developing space capabilities for all-weather imaging
TAIPEI (TVBS News) — Taiwan is advancing its space...
Honda hails successful test of reusable rocket as it looks to get into the space business
Tokyo — Japan's second-biggest carmaker, Honda, has successfully tested...
China’s space program provides larger platform for broader international cooperation
BEIJING -- Experts from China's manned space program said...

June 24th, 2010
Remote Sensing Provides New Tools for Earthquake Assessment and Prediction

A science team at NASAs Jet Propulsion Laboratory in California has been using the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) to measure surface deformation from earthquakes. The radar produces map images that are called interferograms that show ground motion and increased strain along fault lines.

By comparing imagery collected over time, the scientists are able to better understand the complex geology of these regions. Through continued observation, particularly after a quake event, the scientists can determine how strain alters across a fault line, and can help determine if massing of strain along the fault is occurring, priming them to break. The UAVSAR sensor shows details at a much finer granularity than any other type of sensor.

Interesting research is taking place throughout the world to help determine a reliable precursor for earthquake detection:

  • The China Institute for Remote Sensing Applications (IRSA) is studying the possibility of earthquake signal detection through the use of space and ground observation technology in the microwave spectrum. Dr. Yun Shao is the Director of the Microwave Research Division at IRSA, and has been exploring the use of multi-temporal Synthetic Aperture Radar (SAR) and microwave scatterometer (QSCAT and ASCAT) data to help predict the potential for earthquakes.
  • Researchers in India have been studying the use of thermal remote sensing instruments to determine if heat transfer is a reliable earthquake precursor.
  • A plan to study the electrical disturbance in the atmosphere that occurs prior to an earthquake is also underway. Surrey Satellite Technology Limited proposes a constellation of 20 satellites to monitor this warning signal from space, claiming that the electrical charge that occurs as pressure builds up for a quake can be detected weeks in advance.

Clearly, there are promising remote sensing technologies that will not only help us assess the damage from earthquake events, but also to predict and help mitigate their damage.