Asian Surveying & Mapping
Breaking News
bitsensing Signs MOU with IKIO Technologies to Advance AI-Based Traffic Monitoring on India’s Expressways, Highways and Municipal Areas
Backed by proven success in South Korea and Europe,...
Nuri rocket successfully completes KAIST’s next-gen satellite mission
The Korea Advanced Institute of Science and Technology (KAIST)...
President Lai reviews progress on first indigenous satellite constellation
President Lai Ching-te said developing space technology is a...
Japan’s iQPS lines up eight SAR launches
ST. LOUIS — Japan’s Institute for Q-shu Pioneers of...
UAE Astronauts Promote AI and Collaboration in Space at GITEX Europe
The Arab world’s first astronaut, Hazzaa Al Mansouri, and...
New species of space-adapted bacteria discovered on China’s Tiangong space station
Scientists have discovered a previously unknown strain of microbe...
Isro’s 101st mission fails as PSLV-C61 suffers third-stage anomaly
India’s latest Earth observation satellite mission faced a setback...
Iraq’s First Fully Solar-Powered Village in Kulak Is Now Operational
ERBIL, Kurdistan Region – May 20, 2025 — The...
Australia’s Gilmour Space Technologies ready to launch maiden Eris Test flight the nation’s first orbital launch in over 50 years
Gilmour Space Technologies is the leading launch services company...
Korea’s space agency seeks revision of plan to modify next-gen rockets into reusable system
South Korea's aerospace agency said on Thursday that it...
Although solar energy sources are located at the core of the Sun, the temperature of the upper part of the solar atmosphere (i.e., chromosphere and corona) is higher than that of the visible surface (i.e., photosphere). The mechanisms that produce such a peculiar behavior are still a mystery for solar researchers.

A Japanese research team tried to tackle this for the first time, evaluating how much energy is dissipated at the chromosphere through waves. Results show that the amount of dissipated energy is 10 times larger than the required energy to maintain the chromosphere. Therefore, waves could be responsible for heating the upper chromosphere up to its present values (i.e., 10,000 Kelvin).

This discovery was found thanks to an international collaboration among Japanese and U.S. solar-observing satellites. The Hinode mission revealed tiny fluctuations of physical parameters through spectropolarimetric observations, and the IRIS (Interface Region Imaging Spectrograph) performed spectroscopic observations to derive physical information of the upper chromosphere. The combination of these satellites made it possible to evaluate dissipated energy by comparing the energy fluxes obtained at the two atmospheric layers.

Hinode and IRIS satellites helped discover that the dynamic solar chromosphere could be heated and formed by dissipation of energy of waves. (Credit:  NAOJ/JAXA)

Hinode and IRIS satellites helped discover that the dynamic solar chromosphere could be heated and formed by dissipation of energy of waves. (Credit: NAOJ/JAXA)