Asian Surveying & Mapping
Breaking News
NASA releases satellite photos of Dubai and Abu Dhabi before and after record flooding
NASA released photos of parts of Dubai and Abu...
Singapore releases 10-year Geospatial Master Plan
Singapore has launched its new Geospatial Master Plan (2024–33),...
Japan announces plans to launch upgraded observation satellites on new flagship rocket’s 3rd flight
TOKYO (AP) — Japan’s space agency announced Friday a...
Tesla China partners with Baidu for maps to clear FSD hurdle
Amidst Elon Musk’s unannounced trip to Beijing, China this...
ESA opens ideas factory to boost space innovation in Austria
A centre to innovate the design and manufacture of...
Japan’s space agency sets June 30 as third launch date for H3 rocket
The Japan Aerospace Exploration Agency (JAXA) announced Friday that...
S. Korea launches nanosatellite for Earth observation
SEOUL- A South Korean nanosatellite was launched into orbit...
Australian Space Agency funds development of aerospace-grade GNSS receiver
The Australian Space Agency has funded the development of...
Continuity risks for Australian EO data access
A new report details the widespread use of Earth...
China launches new remote sensing satellite
JIUQUAN, April 15 (Xinhua) -- China on Monday launched...

June 24th, 2010
Remote Sensing Provides New Tools for Earthquake Assessment and Prediction

A science team at NASAs Jet Propulsion Laboratory in California has been using the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) to measure surface deformation from earthquakes. The radar produces map images that are called interferograms that show ground motion and increased strain along fault lines.

By comparing imagery collected over time, the scientists are able to better understand the complex geology of these regions. Through continued observation, particularly after a quake event, the scientists can determine how strain alters across a fault line, and can help determine if massing of strain along the fault is occurring, priming them to break. The UAVSAR sensor shows details at a much finer granularity than any other type of sensor.

Interesting research is taking place throughout the world to help determine a reliable precursor for earthquake detection:

  • The China Institute for Remote Sensing Applications (IRSA) is studying the possibility of earthquake signal detection through the use of space and ground observation technology in the microwave spectrum. Dr. Yun Shao is the Director of the Microwave Research Division at IRSA, and has been exploring the use of multi-temporal Synthetic Aperture Radar (SAR) and microwave scatterometer (QSCAT and ASCAT) data to help predict the potential for earthquakes.
  • Researchers in India have been studying the use of thermal remote sensing instruments to determine if heat transfer is a reliable earthquake precursor.
  • A plan to study the electrical disturbance in the atmosphere that occurs prior to an earthquake is also underway. Surrey Satellite Technology Limited proposes a constellation of 20 satellites to monitor this warning signal from space, claiming that the electrical charge that occurs as pressure builds up for a quake can be detected weeks in advance.

Clearly, there are promising remote sensing technologies that will not only help us assess the damage from earthquake events, but also to predict and help mitigate their damage.