Asian Surveying & Mapping
Breaking News
HAL to build, market Isro’s SSLV in landmark deal
New Delhi, Jun 20: In a historic move for...
Taiwan developing space capabilities for all-weather imaging
TAIPEI (TVBS News) — Taiwan is advancing its space...
Honda hails successful test of reusable rocket as it looks to get into the space business
Tokyo — Japan's second-biggest carmaker, Honda, has successfully tested...
China’s space program provides larger platform for broader international cooperation
BEIJING -- Experts from China's manned space program said...
India To Launch $1.5 Billion Joint Earth Mission With NASA In July
National Aeronautics and Space Administration (NASA) and the Indian...
Axiom-4 mission delayed again: ISRO confirms Subhanshu Shukla’s ISS spaceflight won’t launch before 22 June 2025
The Axiom-4 mission to the International Space Station has...
Mengzhou spacecraft for China’s moon-landing mission passes landmark test flight
China has completed the inaugural test flight of its...
Space application for ITMA Asia + CITME 2026 opens
Shanghai – Space application for the 2026 edition of...
Yanmar, Chia Tai and XAG Empower Thai Agriculture through Innovation
Bang Nam Priao District, Chachoengsao Province, Thailand – On...
bitsensing Signs MOU with IKIO Technologies to Advance AI-Based Traffic Monitoring on India’s Expressways, Highways and Municipal Areas
Backed by proven success in South Korea and Europe,...

July 21st, 2011
Secret WWII Underground Bunkers and Tunnels Mapped with ProMark 100 GNSS Receiver

 
Parkes main tool is historic aerial photography, coupled with hours of research in the National Australian Archives and the National Library of Australia. To that he adds geophysical surveys of the infrastructure.  Parkes is undertaking the geophysical surveying and mapping using an Ashtech ProMark™ 100 GNSS receiver and a Willy Bayot PPM Mk 3 magnetometer. 
 
Parkes runs the two units in parallel later processing both data sets. Parkes says, “it is absolutely critical that the GNSS receiver and magnetometer keep in synchronization during data collecting runs including under the frequently encountered tree canopies.” To improve accuracy, he avoids using RTK as “that would involve have another electronic device operating and emitting more noise in the signal spectrum.”  
 
The dual constellation, GPS and GLONASS, reception of the ProMark 100 is essential to the success of Parkes’ work. After more than a hundred data collection passes with the magnetometer and ProMark 100 through groves of trees, at no time did the PDOP rise to more than three and at all times there were more than eight satellites available. The ProMark 100 data is post-processed to improve accuracy. Parkes notes that ironically many of the most interesting finds have been collected under heavy tree canopy. Without the quality of the geographic positions enabled by the ProMark100 under tree canopy, Parkes reports that much of his work would have been impossible to achieve. 
 
In fact, when Parkes first began the project he used a single-constellation GPS system and post processed the results against the local International GNSS Service (IGS) reference station. The GPS only system worked very well until a grove of trees would interfere with the sky. Now with the ProMark 100 GNSS receiver, Parkes surveys using GPS L1 and GLONASS in continuous kinematic mode at a one second collection rate. He then post processes the data against another ProMark 100 used as a local reference station. To date, Parkes has mapped an underground railway, artillery observation posts, several shelters, fuel terminals and other yet to be identified pieces of the vast infrastructure. 
www.ashtech.com