Asian Surveying & Mapping
Breaking News
HAL to build, market Isro’s SSLV in landmark deal
New Delhi, Jun 20: In a historic move for...
Taiwan developing space capabilities for all-weather imaging
TAIPEI (TVBS News) — Taiwan is advancing its space...
Honda hails successful test of reusable rocket as it looks to get into the space business
Tokyo — Japan's second-biggest carmaker, Honda, has successfully tested...
China’s space program provides larger platform for broader international cooperation
BEIJING -- Experts from China's manned space program said...
India To Launch $1.5 Billion Joint Earth Mission With NASA In July
National Aeronautics and Space Administration (NASA) and the Indian...
Axiom-4 mission delayed again: ISRO confirms Subhanshu Shukla’s ISS spaceflight won’t launch before 22 June 2025
The Axiom-4 mission to the International Space Station has...
Mengzhou spacecraft for China’s moon-landing mission passes landmark test flight
China has completed the inaugural test flight of its...
Space application for ITMA Asia + CITME 2026 opens
Shanghai – Space application for the 2026 edition of...
Yanmar, Chia Tai and XAG Empower Thai Agriculture through Innovation
Bang Nam Priao District, Chachoengsao Province, Thailand – On...
bitsensing Signs MOU with IKIO Technologies to Advance AI-Based Traffic Monitoring on India’s Expressways, Highways and Municipal Areas
Backed by proven success in South Korea and Europe,...

February 3rd, 2020
NASA Selects Maxar to Build, Fly Innovative Robotic Spacecraft Assembly Technology on Restore-L

Westminster, Colo. – Maxar Technologies (NYSE:MAXR) (TSX:MAXR), a trusted partner and innovator in Earth Intelligence and Space Infrastructure, today announced that it was selected by NASA to perform an in-space assembly demonstration using a lightweight robotic arm. The arm, called SPIDER (Space Infrastructure Dexterous Robot), will be integrated with the spacecraft bus Maxar is building for NASA’s Restore-L project, which plans to refuel a satellite in low Earth orbit.

The award is valued at $142 million and follows a successful ground demonstration in 2017, and a review in August 2018 that validated Maxar’s first-generation end-to-end system architecture and detailed robotic arm design. Maxar is identifying roughly $2 million of work to be performed by West Virginia University through its West Virginia Robotic Technology Center, including independent verification of SPIDER’s capabilities through multiple performance studies to increase the reliability of in-space assembly tasks. The program was called Dragonfly during the design and ground demonstration phase.

SPIDER will be built by Maxar’s team in Pasadena, Calif., which has previously delivered six robotic arms for NASA’s Mars rovers and landers, including the arm currently operating on InSight Lander and an arm for the upcoming Mars 2020 Rover.

SPIDER will enable spacecraft components to be robotically assembled and reconfigured while on-orbit. For Restore-L, SPIDER will assemble multiple antenna reflector elements into one large antenna reflector. This revolutionary process allows satellites, telescopes and other systems to use larger and more powerful components that might not fit into a standard rocket fairing when fully assembled. The technologies developed under SPIDER could ultimately enable entirely new architectures and space infrastructure for a wide range of government and commercial missions, including commercial satellites, human space exploration to the Moon and Mars under the Artemis program and in-space telescope assembly.

SPIDER will also demonstrate in-space manufacturing using Tethers Unlimited’s MakerSat. MakerSat will manufacture a 10-meter lightweight composite beam, verifying its capability to form large spacecraft truss structures for future missions. As it manufactures the beam, MakerSat will characterize the beam’s shape and structural performance to determine if a structure built in space performs differently than one made here on Earth.

“Maxar has always led innovation in space infrastructure, transforming the commercial satellite industry with advances such as high-throughput satellite technologies for high-speed internet and powerful electric propulsion for next-generation space transportation,” said Megan Fitzgerald, Maxar’s Senior Vice President and General Manager, Space Infrastructure. “SPIDER, in combination with our flexible 1300-class spacecraft bus and technologies for in-space operations, will enable new applications in communications and remote sensing satellites, large in-space assembled telescopes and future exploration missions that support a sustained human presence beyond Earth orbit. We’re delighted to add this innovative program to our growing civil and government space portfolio.”

About Maxar

Maxar is a trusted partner and innovator in Earth Intelligence and Space Infrastructure. We deliver disruptive value to government and commercial customers to help them monitor, understand and navigate our changing planet; deliver global broadband communications; and explore and advance the use of space. Our unique approach combines decades of deep mission understanding and a proven commercial and defense foundation to deploy solutions and deliver insights with unrivaled speed, scale and cost effectiveness. Maxar’s 5,800 team members in 30 global locations are inspired to harness the potential of space to help our customers create a better world. Maxar trades on the New York Stock Exchange and Toronto Stock Exchange as MAXR. For more information, visit www.maxar.com.

Forward-Looking Statements
Certain statements and other information included in this release constitute “forward-looking information” or “forward-looking statements” (collectively, “forward-looking statements”) under applicable securities laws. Statements including words such as “may”, “will”, “could”, “should”, “would”, “plan”, “potential”, “intend”, “anticipate”, “believe”, “estimate” or “expect” and other words, terms and phrases of similar meaning are often intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Forward-looking statements involve estimates, expectations, projections, goals, forecasts, assumptions, risks and uncertainties, as well as other statements referring to or including forward-looking information included in this presentation.

Forward-looking statements are subject to various risks and uncertainties which could cause actual results to differ materially from the anticipated results or expectations expressed in this presentation. As a result, although management of the Company believes that the expectations and assumptions on which such forward-looking statements are based are reasonable, undue reliance should not be placed on the forward-looking statements because the Company can give no assurance that they will prove to be correct. The risks that could cause actual results to differ materially from current expectations include, but are not limited to, the risk factors and other disclosures about the Company and its business included in the Company’s continuous disclosure materials filed from time to time with U.S. securities and Canadian regulatory authorities, which are available online under the Company’s EDGAR profile at www.sec.gov, under the Company’s SEDAR profile at www.sedar.com or on the Company’s website at www.maxar.com.

The forward-looking statements contained in this release are expressly qualified in their entirety by the foregoing cautionary statements. All such forward-looking statements are based upon data available as of the date of this presentation or other specified date and speak only as of such date. The Company disclaims any intention or obligation to update or revise any forward-looking statements in this presentation as a result of new information or future events, except as may be required under applicable securities legislation.