Asian Surveying & Mapping
Breaking News
HAL to build, market Isro’s SSLV in landmark deal
New Delhi, Jun 20: In a historic move for...
Taiwan developing space capabilities for all-weather imaging
TAIPEI (TVBS News) — Taiwan is advancing its space...
Honda hails successful test of reusable rocket as it looks to get into the space business
Tokyo — Japan's second-biggest carmaker, Honda, has successfully tested...
China’s space program provides larger platform for broader international cooperation
BEIJING -- Experts from China's manned space program said...
India To Launch $1.5 Billion Joint Earth Mission With NASA In July
National Aeronautics and Space Administration (NASA) and the Indian...
Axiom-4 mission delayed again: ISRO confirms Subhanshu Shukla’s ISS spaceflight won’t launch before 22 June 2025
The Axiom-4 mission to the International Space Station has...
Mengzhou spacecraft for China’s moon-landing mission passes landmark test flight
China has completed the inaugural test flight of its...
Space application for ITMA Asia + CITME 2026 opens
Shanghai – Space application for the 2026 edition of...
Yanmar, Chia Tai and XAG Empower Thai Agriculture through Innovation
Bang Nam Priao District, Chachoengsao Province, Thailand – On...
bitsensing Signs MOU with IKIO Technologies to Advance AI-Based Traffic Monitoring on India’s Expressways, Highways and Municipal Areas
Backed by proven success in South Korea and Europe,...

October 21st, 2016
Bluesky Aerial Mapping Tech Helps Prevent Trees Falling onto Power, Road and Rail Networks

Aerial mapping from Bluesky is helping to reduce the risk of trees falling on power lines, key roads and railways. Part of an NERC (Natural Environment Research Council) funded project, 3D data produced by Bluesky is being used by scientists at the UK’s University of Lancaster to refine a tree failure risk model that currently uses complex wind analysis techniques to assign a level of risk to individual trees.

The data – Bluesky’s unique National Tree Map, laser mapped 3D height models, Colour Infrared (CIR) data and soil data – will help identify individual trees and their proximity to electricity, road and rail infrastructure, as well as help to make more detailed assessment of their location, health and other features that may cause failure. This is the first tree failure prediction model to approach the problem using individual tree parameters, rather than whole tree stands.

“The aim of the project is to develop a scientifically based, robust and objective method to predict tree failure in severe weather conditions,” commented Dr Alan Blackburn, Senior Lecturer at the Lancaster Environment Centre, part of the University of Lancaster. “Using the Bluesky data, we will refine our existing model with better identification and location of individual trees and groups of trees. The data will also help us identify trees that may be in poor health or have other features that may contribute to failure, and therefore better inform pre-emptive measures.

“We are also working with Bluesky to create a web based GIS application embedding the prediction model, to deliver the results to users across a range of sectors and applications in an intuitive and interactive map format.”

James Eddy, Technical Director of Bluesky, added, “The project team has already completed the first phase of work and has a functioning model that can run historic wind events or future wind predictions and assign a risk to each tree. By improving the initial representation of tree characteristics and context with our National Tree Map data, LiDAR height models and NDVI classification, it is hoped it will be possible to simulate individual tree failures and their impact on infrastructure networks.”

The project, titled ‘Delivering Resilient Power, Road and Rail Networks by Translating a Tree Failure Risk Model for Multi-Sector Applications’, is being led by Lancaster University with funding from NERC and Scottish Power. Other stakeholders include UK Power Networks, Scottish Power, Transport Scotland, Scottish Water, Atkins Global, ADAS and the British Geological Survey (BGS).