Asian Surveying & Mapping
Breaking News
Esri India Achieves 1 Million Users Milestone
Esri India, the leading provider of Geographic Information System...
Bank Negara, Malaysian Space Agency to bolster financial management ecosystem via space technology
KUALA LUMPUR: Bank Negara Malaysia has partnered with the...
Nepal’s president advisor resigns after criticising inclusion of Indian areas in map on new currency
The economic advisor to Nepal’s president on Sunday (May...
TASA to launch six satellites from 2026
The Taiwan Space Agency (TASA) yesterday said it plans...
Japan to provide flood risk maps for four South-East Asian countries – Indonesia, Vietnam, Thailand and Cambodia
JAKARTA/TOKYO: Japan plans to start providing flood risk maps...
Ecolab and ITE partners to harness water management knowledge for Singapore data center engineers
SINGAPORE, 29 APRIL 2024 – Nalco Water, an Ecolab...
NASA releases satellite photos of Dubai and Abu Dhabi before and after record flooding
NASA released photos of parts of Dubai and Abu...
Singapore releases 10-year Geospatial Master Plan
Singapore has launched its new Geospatial Master Plan (2024–33),...
Japan announces plans to launch upgraded observation satellites on new flagship rocket’s 3rd flight
TOKYO (AP) — Japan’s space agency announced Friday a...
Tesla China partners with Baidu for maps to clear FSD hurdle
Amidst Elon Musk’s unannounced trip to Beijing, China this...

April 9th, 2024
Space Flight Laboratory (SFL) Confirms Successful Deployment of HawkEye 360 Microsatellite Clusters 8 and 9

TORONTO, Ontario, Canada, 8 April 2024 – Space Flight Laboratory (SFL) confirmed that six radio frequency geolocation microsatellites developed for HawkEye 360 of Herndon, Va., have successfully communicated with ground control. The HawkEye 360 Cluster 8 and 9 satellites were launched yesterday at 7:16 pm EDT from Florida aboard the SpaceX Bandwagon-1 Rideshare.

HawkEye 360 Cluster 9 in the SFL cleanroom being readied for launch, March 2024.

The two new three-satellite clusters bring to 27 the total number of geolocation microsatellites developed by SFL for HawkEye 360, which integrated Cluster 8 at its own plant in Virginia under SFL’s Flex Production Program. For Cluster 9, which represents the next evolution and includes updated payload and platform features, SFL handled the entire process, including development, integration, and testing, at its Toronto facility.

“SFL is proud to play a key role in the development of HawkEye 360’s space assets as it continues to expand and enhance its unparalleled space-based RF data detection and analytics capabilities,” said SFL Director Dr. Robert E. Zee.

HawkEye 360 selected SFL to develop its satellites due to the importance of attitude control and formation flying by multiple spacecraft for accurate RF signal geolocation. SFL has innovated compact, low-cost formation-flying technology at a maturity and price point that no other small satellite developer can credibly offer.

SFL built the HawkEye 360 Pathfinder satellites on its 15-kg NEMO platform. All subsequent clusters have been developed on the larger 30-kg SFL DEFIANT bus.

The HawkEye 360 constellation detects, characterizes and geolocates RF signals for a variety of communications, navigation, and security applications. Clusters 8 and 9 were launched in mid-inclination orbits to increase coverage over the busiest maritime traffic corridors at mid-latitudes, including the Indo-Pacific region, according to HawkEye 360.

Established in 1998, SFL has developed 76 operationally successful smaller satellite missions totaling more than 300 cumulative years in orbit. Another 20 missions are now under development by SFL, which offers a complete suite of nano-, micro- and small satellites – including high-performance, low-cost CubeSats – that satisfy the needs of a broad range of mission types from 3 to 500 kilograms. For a comprehensive list of SFL high-performance satellite platforms, please visit https://www.utias-sfl.net/satellite-platforms/overview/.

About Space Flight Laboratory (SFL) (www.utias-sfl.net)

SFL generates bigger returns from smaller, lower cost satellites. Small satellites built by SFL consistently push the performance envelope and disrupt the traditional cost paradigm. Satellites are built with advanced power systems, stringent attitude control and high-volume data capacity that are striking relative to the budget. SFL arranges launches globally and maintains a mission control center accessing ground stations worldwide. The pioneering and barrier-breaking work of SFL is a key enabler to tomorrow’s cost-aggressive satellites and constellations. (www.utias-sfl.net)