Asian Surveying & Mapping
Breaking News
HAL to build, market Isro’s SSLV in landmark deal
New Delhi, Jun 20: In a historic move for...
Taiwan developing space capabilities for all-weather imaging
TAIPEI (TVBS News) — Taiwan is advancing its space...
Honda hails successful test of reusable rocket as it looks to get into the space business
Tokyo — Japan's second-biggest carmaker, Honda, has successfully tested...
China’s space program provides larger platform for broader international cooperation
BEIJING -- Experts from China's manned space program said...
India To Launch $1.5 Billion Joint Earth Mission With NASA In July
National Aeronautics and Space Administration (NASA) and the Indian...
Axiom-4 mission delayed again: ISRO confirms Subhanshu Shukla’s ISS spaceflight won’t launch before 22 June 2025
The Axiom-4 mission to the International Space Station has...
Mengzhou spacecraft for China’s moon-landing mission passes landmark test flight
China has completed the inaugural test flight of its...
Space application for ITMA Asia + CITME 2026 opens
Shanghai – Space application for the 2026 edition of...
Yanmar, Chia Tai and XAG Empower Thai Agriculture through Innovation
Bang Nam Priao District, Chachoengsao Province, Thailand – On...
bitsensing Signs MOU with IKIO Technologies to Advance AI-Based Traffic Monitoring on India’s Expressways, Highways and Municipal Areas
Backed by proven success in South Korea and Europe,...

February 20th, 2017
DLR commissions Airbus to Develop the Payload and Payload Ground Segment for MERLIN – the First Franco-German Earth Observation Satellite

Ottobrunn – Airbus Defence and Space, the world’s second largest space company, has signed a contract with Space Administration at the German Aerospace Center (DLR) to develop and build all components of the German contribution to the German-French Earth observation mission MERLIN.

The German Aerospace Center and the French space agency Centre National d’Études Spatiales (CNES) are jointly developing this challenging mission on behalf of the French and German governments. With this step, Europe’s two largest space-faring nations have resolved to seek a deeper understanding of the mechanisms that influence Earth’s climate.

As the industrial prime contractor on the German side, Airbus in Ottobrunn, near Munich, was commissioned by DLR to develop the payload and the payload ground segment. As the industrial prime contractor for CNES, Airbus in Toulouse is responsible for the overall system, the satellite platform and integration of the instrument.

“By developing MERLIN through DLR and CNES, France and Germany are making an important contribution to better understanding the causes of climate change,” said Dr Michael Menking, Head of Earth Observation, Navigation and Science at Airbus Defence and Space.

Starting in 2021, MERLIN (MEthane Remote sensing LIdar missioN) will deploy a LIDAR (Light Detecting and Ranging) instrument to monitor the methane content in Earth’s atmosphere from an altitude of around 500 kilometres, and additionally make possible the first-ever global map of concentrations of this critical greenhouse gas.

Highly precise global measurement and mapping of methane concentrations in the atmosphere is only possible from space, as it requires continuous, large-area observation. Key areas such as tropical wetlands, rain forests and sub-Arctic regions are extremely difficult to survey without satellites.

To date, the methane concentration in the atmosphere has been measured from Earth observation satellites that use solely “passive” instruments. These utilise the sunlight scattered by the Earth’s surface to determine the content of trace gases (such as methane) in the atmosphere. They depend on daylight and only produce optimum results when skies are clear.

The MERLIN mission will be the first to use an “active” LIDAR instrument developed in Germany. It is equipped with an on-board light source (the laser) and can thus measure at night and even through thin cirrus clouds. The instrument emits two short light pulses at two slightly different wavelengths. As one wavelength is absorbed by the methane and the other is not, this difference between the two back-scattered signals can be measured and the methane concentration can be determined with unprecedented precision.

With the aid of data on wind speeds and directions, scientists around the world will be able to convert these values into global methane flow maps and determine the actual regional effects of methane. A better understanding of the global methane cycle is urgently needed in order to reliably predict changes in climate and pursue effective climate protection.