Asian Surveying & Mapping
Breaking News
China unveils first homegrown space mining robot
China's first space mining robot has been developed by...
North Korea rejects G7 call for denuclearization, vows to ‘strengthen’ nuclear forces
North Korea on Monday vowed to "steadily update and...
Taiwan showcases innovative technologies at Satellite 2025
Innovative technologies are on display at the Taiwan Space...
Japanese Astronaut Onishi departs with three others for 2nd Space Mission
Takuya Onishi has left for space for his second...
Saudi Arabia, Korea Sign Memorandum of Cooperation to Enhance Space Collaboration
Riyadh, SPA: The Saudi Space Agency (SSA) today signed...
UAE, Bahrain boost space and climate monitoring with satellite launches
The UAE and Bahrain successfully launched on Sunday their satellites, Etihad-SAT and...
UAE launches first SAR satellite Etihad-SAT
The satellite, weighing 220kg, was launched into space aboard...
China opens 2028 Mars sample return mission to international cooperation
HELSINKI — China is inviting interested parties to submit...
ISRO Chairman Inaugurates Research Centre At IIT Madras To Address Thermal Challenges In Space Applications
This will be nodal centre for research in heat...
Chandrayaan-5 Mission Approved, To Carry 250 kg Rover: ISRO Chief
The Chandrayaan programme has been instrumental in India's lunar...

July 5th, 2023
Teledyne e2v Space Imaging celebrates the success of its sensors as Aeolus de-orbits

Chelmsford, UK – Teledyne e2v Space Imaging, part of the Teledyne Technologies, is proud to have designed and built sensors for Aeolus, the first ESA satellite mission to acquire profiles of Earth’s wind on a global scale.

Named after the Greek god of the winds, Aeolus is the fifth satellite in the Living Planet Programme of the European Space Agency. It has become one of the highest impact-per-observation instruments in existence. It is capable of observing weather systems from the surface of the planet and into the stratosphere 30 km high. This has helped to predict how that environment will behave in the future.

Since 2018, the data from the Aeolus satellite observations have been used to improve weather forecasts and climate models. They have also been used for tracking Saharan dust storms and enabling better understanding of plumes from volcanoes. The Aeolus mission has paved the way for future operational meteorological satellites dedicated to study Earth’s wind profiles.

The Teledyne team manufactured a bespoke sensor for Aeolus with a novel design specifically for this application. It collects many signals from different altitudes, enabling Aeolus to measure wind speed at different heights throughout the atmosphere.

Paul Jerram, Chief Engineer on the Teledyne e2v Aeolus team, said: “The Teledyne Space Imaging team have enjoyed being part of this successful demonstrator mission which has far exceeded expectations. We look forward to building a detector with improved performance for the Aeolus-2 follow-up mission. We are proud to have assisted most of the world’s weather forecasting agencies in improved accuracy of long-range forecasts.”

This month, ESA is setting a precedent with the assisted decommissioning of the now retired Aeolus wind tracking satellite. This will demonstrate to the growing commercial space industry that it is possible to responsibly end space missions and reduce the amount of space debris objects in orbit.

The Teledyne e2v Space Imaging team continue to specialise in bespoke detectors to meet the ever-increasing number of Earth Observation missions.