Asian Surveying & Mapping
Breaking News
China launches new set of classified Yaogan-43 satellites
HELSINKI — China launched a second group of classified...
China-Africa space cooperation benefits people across continent
The Egyptian satellite MISRSAT-2, a high-resolution optical remote-sensing satellite,...
Abu Dhabi astronomers discover new asteroid
ABU DHABI: The International Astronomical Centre in Abu Dhabi...
UAE’s First Private Space Infrastructure Company Launched by Marlan Space and Loft Orbital
Abu Dhabi-based Marlan Space, a new space company affiliated...
Japan’s space agency ends Moon probe operation
Japan's space agency said on Monday it had ended...
Chinese researchers assess U.S. space situational awareness, call for boost in China’s capabilities
HELSINKI — Chinese researchers are calling for improved space...
Japan’s Astroscale wins contract for space junk harvesting robotic arm
Japanese space debris cleaning outfit Astroscale revealed on Monday...
SpaceX rocket carries 2 Taiwan-developed satellites into space
Taipei, Aug. 17 (CNA) A Falcon 9 rocket launched...
Bayanat, Yahsat launch UAE’s first SAR satellite
California , August 17 (ANI/WAM): Bayanat AI PLC (ADX:...
Long March 4B launches experimental Yaogan-43 satellite group
HELSINKI — China successfully launched the first of a...

July 10th, 2019
Orbital Micro Systems Partners with Georgia Tech for Next-Generation Integrated Radiometer Chip Development

Expertise in silicon-germanium semiconductor chip design will result in reduced size and power usage in radiometer designs 

Boulder, CO – Orbital Micro Systems (OMS), a leader in advanced instrumentation for small satellite missions and analysis-ready earth data intelligence platforms, announced that it has partnered with Georgia Tech (Georgia Institute of Technology) to develop Monolithic Millimeter-Wave Integrated Circuit (MMIC) devices using silicon-germanium semiconductor hybrid material for its next generation of commercial earth observation radiometry instruments. Working closely with the University’s Silicon-Germanium Devices and Circuits group, led by Professor John D. Cressler, OMS anticipates the single-chip solution will dramatically reduce the weight, size, and power consumption of its satellite-based instruments while taking advantage of the inherent radiation tolerance of silicon-germanium devices. Dr. Cressler is a renowned expert on silicon-germanium design and is the Schlumberger Chair Professor in Electronics and Ken Byers Teaching Fellow in Science and Religion in the Georgia Tech School of Electrical and Computer Engineering.

“We could not be more excited about our collaboration with Georgia Tech’s world-class team in the area of silicon-germanium devices and circuits,” said Michael Hurowitz, chief technology officer for OMS. “Designing instruments for use in key weather and climate observations requires us to continuously innovate to achieve state-of-the-art capabilities while simultaneously optimizing for size, weight, power, cost, resiliency, reliability, sensitivity, and resolution. Working with our esteemed colleagues at Georgia Tech will accelerate our earth observation constellation mission and ultimately enable better weather and climate data collection for every point on the globe.”

OMS brings decades of successful design and miniaturization of microwave radiometers to the effort. The company’s recent launch of the first satellite in its Global Earth Monitoring System (GEMS) constellation employs the current generation of miniaturized instruments.

The GEMS constellation is planned to incorporate some 48 satellites operating in low earth orbit (LEO) gathering global temperature, humidity, and precipitation data. When fully complemented, the satellites will provide observations at a 15-minute revisit rate – a dramatic improvement over the infrequent observations from large government-owned weather satellites. Delivering more dense weather data to commercial and government customers through the International Center for Earth Data (ICED), OMS will address unmet needs in multiple areas including safety, security, and prosperity, as well as commercial transportation, insurance, and agriculture markets.

“Our team is delighted to support OMS’ mission to substantially improve the quality and frequency of earth observation data for government and commercial stakeholders,” said Dr. Cressler. “We’re honored to participate in this project, which we hope will be able to positively impact hundreds of millions of lives around the globe.”

For more information about Orbital Micro Systems, please visit www.orbitalmicro.com.

About Orbital Micro Systems 

Orbital Micro Systems (OMS) specializes in the development and delivery of technology and data for space applications. With broad expertise in applied science, weather science and earth observation, instrumentation development, data science, space operations, and program delivery, OMS is positioned to deliver innovation to many areas of the aerospace sector. For more information about OMS, please visit www.orbitalmicro.com