1. Use the ObliCapture app (Android) on a tablet or smart phone to define the job. This involves selecting: the area of interest (by pointing to the location on the map), a template (from predefined options such as a single house, group of buildings, golf course, etc.), a flight plan (from a few predefined options), and a quality level for the images. An area of interest is typically less than 0.3 square kilometers. Defining the job can be performed in as little as a couple of minutes. From this information, the aerial drone can fly the mission 100% autonomously.
2. The drone takes off and flies to the area of interest, takes the images, and returns to the user. Depending on the size of the area and the requested image quality, this step can take 3-15 minutes.
3. The ObliMapper software on a laptop computer reads the captured data directly from the drone via a cable connection and uses the captured metadata (position and orientation for each photo) to automatically geo-coordinate each oblique photo to the orthoimage/map. This step typically requires about two minutes.
At this stage the ObliMapper user can analyze the oblique images by clicking on any location in the subject area to see the relevant oblique images from all four directions to quickly gain a very good understanding of the area – much better than possible from a vertical aerial image alone. The user can perform accurate measurements on the oblique images such as the height of a wall, tree, or building, dimensions of a gate or window, etc.
If desired, in a second phase the user can run the built-in Agisoft 3D modeler (one button push) to create a 3D model of the area of interest in a choice of data formats (OJB, FBX, OSGB), a DSM (digital surface model), and an Orthophoto. These can be available in as little as one hour following the return of the drone. ObliMapper’s built-in 3D viewer can be used to view the 3D model, generate slopes and contour lines, and perform accurate measurements and line-of-sight analysis. The oblique images and 3D model can be geographically synchronized to display small details that could not be included in the 3D model alone.
Key advantages of ObliMapper are its compatibility with just about any off-the-shelf aerial drone (UAV) product, ease of use, independence from the internet or WiFi, and the way the system automatically processes and analyzes captured imagery to deliver results quickly. A typical user masters the system after only three to four hours.
IDAN Computers uses the TatukGIS Developer Kernel (for Delphi edition, with the Embarcadero C++Builder development environment) to develop the GIS features of the ObliMapper software. TatukGIS functionality is used to display the orthophoto and geographical data (vectors), georeference the oblique images (using the DK’s advanced support for coordinate systems in use all around the world), and perform complicated geometric analysis. IDAN Computers has been an active TatukGIS customer since 2005. An earlier IDAN Computer related news article was published in January 2006.
ObliMapper is used by military, law enforcement, homeland security, intelligence organizations, and rescue and fire brigades for mission planning and emergency response purposes. Other ObliMapper customers include engineering companies to monitor large construction sites, municipalities to control safety and enforce regulations, insurance companies to get a better knowledge and understanding of a situation, and cellular antenna companies for infrastructure asset maintenance.
ObliMapper is licensed per user seat or by site. IDAN Computers also offers a web browser version of ObliMapper.
Learn more about IDAN Computers and its ObliMapper product at: www.idan.com
Learn more about TatukGIS and its GIS Developer Kernel (SDK) product at: www.tatukgis.com