Asian Surveying & Mapping
Breaking News
bitsensing Signs MOU with IKIO Technologies to Advance AI-Based Traffic Monitoring on India’s Expressways, Highways and Municipal Areas
Backed by proven success in South Korea and Europe,...
Nuri rocket successfully completes KAIST’s next-gen satellite mission
The Korea Advanced Institute of Science and Technology (KAIST)...
President Lai reviews progress on first indigenous satellite constellation
President Lai Ching-te said developing space technology is a...
Japan’s iQPS lines up eight SAR launches
ST. LOUIS — Japan’s Institute for Q-shu Pioneers of...
UAE Astronauts Promote AI and Collaboration in Space at GITEX Europe
The Arab world’s first astronaut, Hazzaa Al Mansouri, and...
New species of space-adapted bacteria discovered on China’s Tiangong space station
Scientists have discovered a previously unknown strain of microbe...
Isro’s 101st mission fails as PSLV-C61 suffers third-stage anomaly
India’s latest Earth observation satellite mission faced a setback...
Iraq’s First Fully Solar-Powered Village in Kulak Is Now Operational
ERBIL, Kurdistan Region – May 20, 2025 — The...
Australia’s Gilmour Space Technologies ready to launch maiden Eris Test flight the nation’s first orbital launch in over 50 years
Gilmour Space Technologies is the leading launch services company...
Korea’s space agency seeks revision of plan to modify next-gen rockets into reusable system
South Korea's aerospace agency said on Thursday that it...

August 14th, 2017
Lockheed Martin Will Build New Space Instrument Focused on Vegetation Health and Carbon Monitoring

PALO ALTO, Calif. – Scientists will get a better understanding of our planet’s carbon cycle and vegetation health through a first-of-a-kind NASA instrument built by Lockheed Martin (NYSE: LMT). The Geostationary Carbon Cycle Observatory (GeoCARB) mission will use an advanced infrared spectrograph hosted on a commercial geosynchronous satellite. The project is led by Principal Investigator Dr. Berrien Moore at the University of Oklahoma.

 

“Lockheed Martin has the right skills to make GeoCARB a success, bringing together our deep expertise in infrared sensing and hosted payloads,” said Gary Kushner, the Lockheed Martin instrument program manager. “Through our collaboration with the University of Oklahoma, NASA and Colorado State University, we can deliver better information about our planet’s health to decision makers and scientists around the globe.”

 

Lockheed Martin’s Advanced Technology Center in Palo Alto, California, will build the instrument, which has its roots in the Near Infrared Camera on the James Webb Space Telescope. Instead of staring into deep space, this mission will examine infrared wavelengths to measure carbon dioxide, carbon monoxide and methane in Earth’s atmosphere along with Solar Induced Fluorescence, a measure of vegetation health. GeoCARB is expected to launch in 2022.

 

The instrument will be launched as a hosted payload on an upcoming commercial satellite in geostationary orbit over the Americas. This expands the corporation’s experience in hosted payload integration, made possible by innovative instruments that offer compact and affordable capability. This cost-capped mission will demonstrate the ability to perform hosted geosynchronous payload missions at a fraction of the cost of a standalone mission.

 

The Lockheed Martin team brings together the heritage of more than 100 payloads and instruments launched in the past 30 years. Lockheed Martin’s expertise in Earth remote sensing includes recent successes like the Earth Polychromatic Imaging Camera (EPIC), which streams high-resolution imagery of the planet from its observation station one million miles away; and the Geostationary Lightning Mapper, whose first of four units launched Nov. 19, 2016 aboard the new Geostationary Operational Environmental Satellite R-Series satellite.

 

About Lockheed Martin

Headquartered in Bethesda, Maryland, Lockheed Martin is a global security and aerospace company that employs approximately 97,000 people worldwide and is principally engaged in the research, design, development, manufacture, integration and sustainment of advanced technology systems, products and services.