Asian Surveying & Mapping
Breaking News
Australian Space Agency funds development of aerospace-grade GNSS receiver
The Australian Space Agency has funded the development of...
Continuity risks for Australian EO data access
A new report details the widespread use of Earth...
China launches new remote sensing satellite
JIUQUAN, April 15 (Xinhua) -- China on Monday launched...
7.4-Magnitude Earthquake Strikes Taiwan
A major, 7.4-magnitude earthquake struck the eastern coast of...
Tata Deploys Its Geospatial Satellite In Space on Space X’s Falcon 9 Rocket
THIRUVANANTHAPURAM: Tata Company launched India's first private commercial satellite...
Taiwan’s Formosat-8 Satellite Set for Launch by 2025
The Taiwan Space Agency has announced progress on the...
Iranian Scientists to Build Satellite Constellation for 2 Simultaneous Missions
The scientists at the knowledge-based company had previously succeeded...
China provides geospatial intel and other military support to Russia, US says
The US has warned its European allies that China...
Japanese lunar lander company ispace raises $53.5 million in stock sale
WASHINGTON — Japanese lunar lander developer has raised $53.5...
Esri and Prince Sultan University Advance GIS Education Through Strategic Partnership
Memorandum of Understanding with Institution Enhances GIS Curriculum and...

July 18th, 2017
Norway Successfully Launches Microsatellites Built by Toronto’s Space Flight Laboratory

The Space Flight Laboratory (SFL) announced today the successful launch of two Norwegian microsatellites developed and built by SFL for the Norwegian Space Centre with support from the Norwegian Coastal Authority, Space Norway, and the European Space Agency. The Soyuz-2.1a rocket carrying the satellites into orbit launched from Baikonur at 06:36:49 UTC Friday 14 July 2017. Shortly after launch both satellites were contacted from ground stations in Svalbard and Vardo, Norway. Both satellites are healthy based on initial telemetry, and commissioning is underway.

The first satellite, dubbed NORsat-1 carries a state-of-the-art Automatic Identification System (AIS) receiver to acquire messages from maritime vessels, a set of Langmuir probes to study space plasma characteristics, and a Compact Lightweight Absolute Radiometer (CLARA) to measure total solar irradiation and variations over time. The payloads were provided by Kongsberg Seatex, the University of Oslo and the Physikalisch-Meterologisches Observatorium Davos World Radiation Center.

The satellite is approximately 15 kilograms with main body dimensions of 20x30x40cm. NORsat-1 utilizes SFL’s Next-generation Earth Monitoring and Observation (NEMO) platform, and will serve the Norwegian Coastal Authority in monitoring maritime traffic while also performing ground breaking science.

The second satellite, NORsat-2 also carries an AIS receiver, but in addition has a VHF Data Exchange (VDE) payload that will enable higher bandwidth two-way communication with ships. Both payloads were provided by Kongsberg Seatex. NORsat-2 will be the first satellite to provide VDE services to Norway. Adding VDE enables increased messaging capacity, better reliability of message delivery, and increased range of ship-to-shore and ship-to-ship communication beyond direct line of sight.

SFL’s NEMO platform was used for NORsat-2, and the satellite was integrated in Toronto along with NORsat-1. The relatively large deployable Yagi antenna for the VDE payload was developed by SFL in collaboration with the University of Toronto’s Electromagnetics Group.

About Space Flight Laboratory (SFL)

SFL builds big performance into smaller, lower cost satellites. Small satellites built by SFL consistently push the performance envelope and disrupt the traditional cost paradigm. Satellites are built with advanced power systems, stringent attitude control and high-volume data capacity that are striking relative to the budget. SFL arranges launches globally and maintains a mission control center accessing ground stations worldwide. The pioneering and barrier breaking work of SFL is a key enabler to tomorrow’s cost aggressive satellite constellations. (www.utias-sfl.net)