Asian Surveying & Mapping
Breaking News
bitsensing Signs MOU with IKIO Technologies to Advance AI-Based Traffic Monitoring on India’s Expressways, Highways and Municipal Areas
Backed by proven success in South Korea and Europe,...
Nuri rocket successfully completes KAIST’s next-gen satellite mission
The Korea Advanced Institute of Science and Technology (KAIST)...
President Lai reviews progress on first indigenous satellite constellation
President Lai Ching-te said developing space technology is a...
Japan’s iQPS lines up eight SAR launches
ST. LOUIS — Japan’s Institute for Q-shu Pioneers of...
UAE Astronauts Promote AI and Collaboration in Space at GITEX Europe
The Arab world’s first astronaut, Hazzaa Al Mansouri, and...
New species of space-adapted bacteria discovered on China’s Tiangong space station
Scientists have discovered a previously unknown strain of microbe...
Isro’s 101st mission fails as PSLV-C61 suffers third-stage anomaly
India’s latest Earth observation satellite mission faced a setback...
Iraq’s First Fully Solar-Powered Village in Kulak Is Now Operational
ERBIL, Kurdistan Region – May 20, 2025 — The...
Australia’s Gilmour Space Technologies ready to launch maiden Eris Test flight the nation’s first orbital launch in over 50 years
Gilmour Space Technologies is the leading launch services company...
Korea’s space agency seeks revision of plan to modify next-gen rockets into reusable system
South Korea's aerospace agency said on Thursday that it...

May 30th, 2017
Bluesky Aerial Maps Help Assess Risk of Flash Floods

Aerial photography from Bluesky is being used to identify changes in sediment movement in upland river courses, to help assess the risk of flash flooding. In research centred on the English Lake District National Park, the imagery is helping map region-wide river erosion and sedimentation patterns. Using a Geographical Information System (GIS), Bluesky’s aerial maps, dating from 2003 and 2009, alongside older aerial photographs and historic Ordnance Survey maps, are being used to understand river channel change from 1850 to the present day.

Rivers in upland regions are associated with greater rates of erosion and sediment transfer due to steep channel gradients, concentrated or ‘flashy’ storm discharges, and an active supply of material from surrounding hillsides. This can lead to changes in channel patterns and morphology, affect flood risk and impact on the surrounding landscape and environment.

“Upland rivers experience high rates of erosion and sediment transfer and are highly susceptible to changes in their planform. This can influence flood risk, affect land boundaries, damage infrastructure and habitat diversity,” commented Hannah Joyce, Research Postgraduate Student at Durham University and author of the study. “Understanding how these rivers have changed in the past can provide insights into how these systems might evolve in the future. With more extreme weather events, such as storm Desmond in 2015 which broke the UK’s 24 hour rainfall record, we are expected to see future changes in upland river courses.”

Using GIS, river channel banks and gravel bars are being digitised on the different dated imagery. The different data will be overlaid to quantify channel changes and movements over time. This information will be compared for all rivers in the central Lake District National Park, and the outcome of the research and the approach used will be applied to other upland areas for improved understanding and management of river sediment and erosion issues.

Designed to inform targeted management strategies to address current engineering problems and mitigate against future flood risks, the Bluesky imagery is being used in a partnership between Durham University, Newcastle University and the Lake District National Park Authority (LDNPA). The project is funded by the Natural Environment Research Council (NERC).

The Bluesky aerial photography was originally purchased by the LDNPA, where it is accessed by all staff using the Authority’s GIS. Applications of the data include use by the Planning Team to examine developments over a period of time, while other staff use the Bluesky imagery to assist with conservation management, identify archaeological features and manage LDNPA properties.