Asian Surveying & Mapping
Breaking News
Iran to launch three indigenous remote-sensing satellites into space by yearend: Official
The head of the Iranian Space Agency (ISA) says...
UAE TO PARTNER WITH MITSUBISHI HEAVY INDUSTRIES AGAIN FOR NEXT EMIRATI NATIONAL MISSION
Tokyo, Japan -The UAE Space Agency ("UAESA") has formalized an...
China launches third high orbit internet satellite
HELSINKI — China launched a new communications satellite towards...
Japan’s H3 to launch Emirati asteroid mission
WASHINGTON — The United Arab Emirates will launch a...
China overtaking the US in space-based EO
The latest assessment of the world’s best commercial space-based...
UAE Cabinet approves establishment of Supreme Space Council
Ibadan – The UAE Cabinet, chaired by His Highness...
ISRO’s AstroSat, NASA’s space observatories capture dramatic eruptions from stellar wreckage
India’s AstroSat and NASA’s space observatories have captured dramatic...
Saudi: GEOSA and RIPC sign deal to enhance the role of Geospatial Data in infrastructure projects
Riyadh: The General Authority for Survey and Geospatial Information...
World’s largest solar project will send Australian energy to Singapore
In August, Australia’s environment minister Tanya Plibersek approved the...
India’s Drone Market to Skyrocket with 44.2% CAGR by 2029, Driven by Aatmanirbhar Bharat Initiative
India is witnessing a technological revolution because it is...

May 8th, 2017
James Webb Space Telescope Moving Forward – Latest Milestone for Airbus Contributions to the Mission

James Webb telescope and instrument module shipped by NASA from Goddard Space Flight Centre in Washington to Johnson Space Centre in Houston for final tests

Houston 08/05/2017 – OTIS (Optical Telescope Element and Integrated Science), the payload module hosting the telescope and the instruments for the giant James Webb Space Telescope (JWST) has been shipped by NASA to the Johnson Space Centre (JSC) in Houston, Texas. OTIS includes two European instruments with major Airbus contributions, the near-infrared spectrograph NIRSpec built by Airbus and the mid-infrared instrument MIRI built with the support of Airbus.

NIRSpec, weighing 200kg, will be able to detect the faintest radiation from the most distant galaxies, observing more than 100 of them simultaneously. It will observe large samples of galaxies and stars at unprecedented depths across large swathes of the Universe and far back in time. Once launched, NIRSpec, known as the ‘super eye’, will operate at a temperature of -238°C. The instrument was developed by Airbus for the European Space Agency (ESA).

 

The MIRI instrument is a combined camera, spectrograph and coronagraph for mid-infrared wavelengths that will extend JWST’s observation capabilities to longer wavelengths, vital for the study of light from objects in the early universe or to peer inside dust clouds where stars and planetary systems are forming today. MIRI was developed by a European consortium of 21 institutes from 10 ESA member states as well as NASA’s Jet Propulsion Laboratory and Goddard Space Flight Centre, led by the UK’s Astronomy Technology Centre with project management from Airbus.
“This is a fantastic next step for the James Webb Space Telescope – bringing it one step closer to launch on Ariane 5,” said Nicolas Chamussy, Head of Space Systems. “JWST will enable us to study the early Universe and peer inside dust clouds to study star formation. This spacecraft represents the pinnacle of technology for modern astronomy, and shows Airbus’ outstanding expertise in support of the scientific research that JWST will carry out.”

 

NASA, ESA, and the Canadian Space Agency (CSA) are collaborating to develop JWST, designed to be the next step after the legendary Hubble Space Telescope. After its launch in 2018 on an Ariane 5 launcher from Europe’s spaceport in Kourou, French Guiana, JWST will be the largest astronomical telescope in space. It will be able to study key phases in the evolution of the Universe in great detail – from the formation of the first stars and galaxies only a few hundred millions years after the Big Bang to the formation of planetary systems in our own Milky Way galaxy today.