Asian Surveying & Mapping
Breaking News
Launch of Australia’s 1st orbital rocket, Gilmour Space’s Eris-1, delayed again
Update for 6:15 p.m. ET on July 1: Gilmour Space...
SAASST, UAE Space Agency strengthen scientific partnership
SHARJAH- Prof. Hamid M.K. Al Naimiy, Director of the...
Shubhanshu Shukla to speak to students and ISRO scientists this Friday
Indian astronaut Shubhanshu Shukla will interact with school students...
ISRO hands over 10 advanced technologies to Indian firms in major push for space commercialisation
The Indian Space Research Organisation (ISRO) has transferred ten...
DIGIPIN Launched: India Embraces Geospatial Precision in Digital Addressing
IIT Hyderabad (IITH), in partnership with the Department of...
HAL to build, market Isro’s SSLV in landmark deal
New Delhi, Jun 20: In a historic move for...
Taiwan developing space capabilities for all-weather imaging
TAIPEI (TVBS News) — Taiwan is advancing its space...
Honda hails successful test of reusable rocket as it looks to get into the space business
Tokyo — Japan's second-biggest carmaker, Honda, has successfully tested...
China’s space program provides larger platform for broader international cooperation
BEIJING -- Experts from China's manned space program said...
India To Launch $1.5 Billion Joint Earth Mission With NASA In July
National Aeronautics and Space Administration (NASA) and the Indian...

July 5th, 2023
Teledyne e2v Space Imaging celebrates the success of its sensors as Aeolus de-orbits

Chelmsford, UK – Teledyne e2v Space Imaging, part of the Teledyne Technologies, is proud to have designed and built sensors for Aeolus, the first ESA satellite mission to acquire profiles of Earth’s wind on a global scale.

Named after the Greek god of the winds, Aeolus is the fifth satellite in the Living Planet Programme of the European Space Agency. It has become one of the highest impact-per-observation instruments in existence. It is capable of observing weather systems from the surface of the planet and into the stratosphere 30 km high. This has helped to predict how that environment will behave in the future.

Since 2018, the data from the Aeolus satellite observations have been used to improve weather forecasts and climate models. They have also been used for tracking Saharan dust storms and enabling better understanding of plumes from volcanoes. The Aeolus mission has paved the way for future operational meteorological satellites dedicated to study Earth’s wind profiles.

The Teledyne team manufactured a bespoke sensor for Aeolus with a novel design specifically for this application. It collects many signals from different altitudes, enabling Aeolus to measure wind speed at different heights throughout the atmosphere.

Paul Jerram, Chief Engineer on the Teledyne e2v Aeolus team, said: “The Teledyne Space Imaging team have enjoyed being part of this successful demonstrator mission which has far exceeded expectations. We look forward to building a detector with improved performance for the Aeolus-2 follow-up mission. We are proud to have assisted most of the world’s weather forecasting agencies in improved accuracy of long-range forecasts.”

This month, ESA is setting a precedent with the assisted decommissioning of the now retired Aeolus wind tracking satellite. This will demonstrate to the growing commercial space industry that it is possible to responsibly end space missions and reduce the amount of space debris objects in orbit.

The Teledyne e2v Space Imaging team continue to specialise in bespoke detectors to meet the ever-increasing number of Earth Observation missions.