Asian Surveying & Mapping
Breaking News
Ecolab and ITE partners to harness water management knowledge for Singapore data center engineers
SINGAPORE, 29 APRIL 2024 – Nalco Water, an Ecolab...
NASA releases satellite photos of Dubai and Abu Dhabi before and after record flooding
NASA released photos of parts of Dubai and Abu...
Singapore releases 10-year Geospatial Master Plan
Singapore has launched its new Geospatial Master Plan (2024–33),...
Japan announces plans to launch upgraded observation satellites on new flagship rocket’s 3rd flight
TOKYO (AP) — Japan’s space agency announced Friday a...
Tesla China partners with Baidu for maps to clear FSD hurdle
Amidst Elon Musk’s unannounced trip to Beijing, China this...
ESA opens ideas factory to boost space innovation in Austria
A centre to innovate the design and manufacture of...
Japan’s space agency sets June 30 as third launch date for H3 rocket
The Japan Aerospace Exploration Agency (JAXA) announced Friday that...
S. Korea launches nanosatellite for Earth observation
SEOUL- A South Korean nanosatellite was launched into orbit...
Australian Space Agency funds development of aerospace-grade GNSS receiver
The Australian Space Agency has funded the development of...
Continuity risks for Australian EO data access
A new report details the widespread use of Earth...

July 21st, 2011
Secret WWII Underground Bunkers and Tunnels Mapped with ProMark 100 GNSS Receiver

 
Parkes main tool is historic aerial photography, coupled with hours of research in the National Australian Archives and the National Library of Australia. To that he adds geophysical surveys of the infrastructure.  Parkes is undertaking the geophysical surveying and mapping using an Ashtech ProMark™ 100 GNSS receiver and a Willy Bayot PPM Mk 3 magnetometer. 
 
Parkes runs the two units in parallel later processing both data sets. Parkes says, “it is absolutely critical that the GNSS receiver and magnetometer keep in synchronization during data collecting runs including under the frequently encountered tree canopies.” To improve accuracy, he avoids using RTK as “that would involve have another electronic device operating and emitting more noise in the signal spectrum.”  
 
The dual constellation, GPS and GLONASS, reception of the ProMark 100 is essential to the success of Parkes’ work. After more than a hundred data collection passes with the magnetometer and ProMark 100 through groves of trees, at no time did the PDOP rise to more than three and at all times there were more than eight satellites available. The ProMark 100 data is post-processed to improve accuracy. Parkes notes that ironically many of the most interesting finds have been collected under heavy tree canopy. Without the quality of the geographic positions enabled by the ProMark100 under tree canopy, Parkes reports that much of his work would have been impossible to achieve. 
 
In fact, when Parkes first began the project he used a single-constellation GPS system and post processed the results against the local International GNSS Service (IGS) reference station. The GPS only system worked very well until a grove of trees would interfere with the sky. Now with the ProMark 100 GNSS receiver, Parkes surveys using GPS L1 and GLONASS in continuous kinematic mode at a one second collection rate. He then post processes the data against another ProMark 100 used as a local reference station. To date, Parkes has mapped an underground railway, artillery observation posts, several shelters, fuel terminals and other yet to be identified pieces of the vast infrastructure. 
www.ashtech.com