Asian Surveying & Mapping
Breaking News
Esri India Achieves 1 Million Users Milestone
Esri India, the leading provider of Geographic Information System...
Bank Negara, Malaysian Space Agency to bolster financial management ecosystem via space technology
KUALA LUMPUR: Bank Negara Malaysia has partnered with the...
Nepal’s president advisor resigns after criticising inclusion of Indian areas in map on new currency
The economic advisor to Nepal’s president on Sunday (May...
TASA to launch six satellites from 2026
The Taiwan Space Agency (TASA) yesterday said it plans...
Japan to provide flood risk maps for four South-East Asian countries – Indonesia, Vietnam, Thailand and Cambodia
JAKARTA/TOKYO: Japan plans to start providing flood risk maps...
Ecolab and ITE partners to harness water management knowledge for Singapore data center engineers
SINGAPORE, 29 APRIL 2024 – Nalco Water, an Ecolab...
NASA releases satellite photos of Dubai and Abu Dhabi before and after record flooding
NASA released photos of parts of Dubai and Abu...
Singapore releases 10-year Geospatial Master Plan
Singapore has launched its new Geospatial Master Plan (2024–33),...
Japan announces plans to launch upgraded observation satellites on new flagship rocket’s 3rd flight
TOKYO (AP) — Japan’s space agency announced Friday a...
Tesla China partners with Baidu for maps to clear FSD hurdle
Amidst Elon Musk’s unannounced trip to Beijing, China this...

April 23rd, 2019
SRI International Demonstrates Interferometric SAR with Radar Designed for CubeSat Form Factor

MENLO PARK, Calif.—Researchers from SRI International have successfully demonstrated new Interferometric Synthetic Aperture Radar (InSAR) capabilities with a radar developed for CubeSat-based earth science applications. Designed for the power and thermal requirements of the space environment, the low-weight, highly compact sensor has the potential to improve short-term forecasting of geologic hazards and enable more effective management of natural resources.

STEM-research

InSAR allows for a radar sensor to take high-precision images of an area of interest, such as a volcano or earthquake zone, and measure the differences in ground deformation across multiple data collection times. For maximum impact, InSAR measurements must be precise to the sub-centimeter level, as well as timely. Leveraging the increasing availability of CubeSats, SRI is working to provide high-precision ground deformation measurement capabilities that can be deployed in a constellation of InSAR sensors capable of daily monitoring of geologic targets.

“This is an exciting new phase to our scientific survey work we conducted over Kilauea during the volcanic eruption. Our expertise in developing systems for use in austere conditions can now be extended into space, helping geologists to better understand, characterize and measure geologic deformation of the Earth’s surface,” said Patrick Rennich, principal research engineer, Signals and Space Technology Laboratory, SRI International. “These highly precise measurements can provide scientists with key information to help improve forecasting models for natural phenomena such as volcanos, earthquakes, and landslides.”

SRI researchers designed, developed, and tested the SRI CubeSat Imaging Radar for Earth Science (SRI-CIRES) to fit within CubeSat and hobbyist-level UAV size, weight, and power constraints. During the 2019 CubeSat Developers Workshop, SRI will present the initial UAV flight test results of SRI-CIRES, showing that the prototype can meet the science objectives and performance requirements of an operational mission.