Asian Surveying & Mapping
Breaking News
European aerial surveying industry gathered at the 2022 EAASI Summit
More than 70 members of the aerial mapping industry...
China releases report on remote sensing monitoring for global ecology
BEIJING - China's Ministry of Science and Technology issued...
Singapore launches Environmental Services Industry Transformation Map, to create more than 1,600 PMET jobs by 2025
With a total of 23 Industry Transformation Maps to be...
China builds new dam in Tibet near Indian border
In a development that is a matter of concern...
Abu Dhabi’s Bayanat more than doubles 2022 net profit on revenue boost
Bayanat, a geospatial data products and services provider which listed...
Esri India Inks MoU with TEXMiN – IIT (ISM) Dhanbad
Esri India, the country’s leading Geographic Information System (GIS)...
China forms all-weather remote sensing monitoring system for all waters, islands: top aerospace authorities
China’s space technology was deeply applied in the country’s...
EU and Japan to improve Earth observation data through Copernicus
As part of a recent agreement, Japan will provide...
Indonesia deploys first student satellite through KiboCUBE programme
VIENNA - Indonesia has successfully deployed its first student...
Joshimath Crisis: ISRO Satellite Images, Reports Show How the Entire Town is at the Brink of Collapse
An eerie silence prevails over the small town of...
Nepal earthquake deformation node full image 2

Radar imagery from the Sentinel-1A satellite shows that the maximum land deformation is only 17 km from Nepal’s capital, Kathmandu, which explains the extremely high damage experienced in this area.

By combining Sentinel-1A imagery acquired before and after the quake, changes on the ground that occurred between the two acquisition dates lead to rainbow-coloured interference patterns in the combined image, known as an ‘interferogram’, enabling scientists to quantify the ground movement.

Sentinel-1A’s swath width of 250 km over land surfaces has allowed for an unprecedented area size to be analysed from a single scan. The entire area will be covered under the same geometry every 12 days, allowing for the wider region to be regularly monitored and fully analysed for land deformation with the powerful ‘interferometry’ technique.

Products ensuring a full coverage of the affected area prior to the earthquake were available to all scientists under the Copernicus free and open data policy, and will continue to be available.

Sentinel-1A is the first satellite for the Copernicus environment-monitoring programme led by the European Commission. Its all-weather, day-or-night radar imagery is particularly suited to support impact assessment for many types of geohazards. The satellite is planned to provide systematic observations of tectonic and volcanic areas at global level.

Imagery from the Sentinels and other Copernicus contributing missions are coordinated by ESA to be used by the Copernicus Emergency Management Service (EMS), which supports all phases of the emergency management cycle.

The Copernicus EMS was activated on the day the earthquake struck, prompting ESA to begin collecting satellite imagery, which is being made available to support relief efforts. 

In parallel, the International Charter Space and Major Disasters was activated by India, China and the UN. Partner Agencies of this initiative have been providing data and products over the area to relief organisations.