Asian Surveying & Mapping
Breaking News
GSSI Ground Penetrating Radar Equipment Used in Mount Everest Measurement Expedition
GSSI, the world’s leading manufacturer of ground penetrating radar...
European commercial drone developer FIXAR enters the Indian market with Paras Aerospace
EU-based commercial drone design and software developer FIXAR, has...
United Arab Emirates to launch bold asteroid mission in 2028
The United Arab Emirates (UAE) has set its sights...
WAFA: “Work of Palestinian land surveyors in Masafer Yatta interrupted by Israeli settlers”s”
HEBRON – Extremist Israeli settlers attacked a number of...
Ola acquires geospatial company GeoSpoc
Ola has acquired GeoSpoc, a six-year-old Pune-based geospatial company....
New UAE space mission will orbit Venus and land on an asteroid
The United Arab Emirates is setting a course for...
Britain’s space programme has been hit by Brexit, with FIVE concerns to be resolved before launch.
BREXIT BRITAIN’S SPACE STRATEGY has been slammed, with this...
Nobel Prize for physics winner shaped ground-breaking Earth-observing mission
This year's Nobel Prize in Physics laureate Klaus Hasselmann...
China deepens application use for BeiDou technology to build an integrated industrial ecosystem
As China has continuously deepened the application of the...
PM Modi launches India’s first private space association
New Delhi: India will soon have policies on space communication...

In 2011 and 2012 the first four satellites were launched into orbit. Four is the minimum number needed to perform navigation fixes.

In the following year, these satellites were combined with a growing global ground infrastructure to allow the project to undergo its crucial In-Orbit Validation phase: IOV.

IOV was required to demonstrate that the future performance that we want to meet when the system is deployed is effectively reachable

IOV was required to demonstrate that the future performance that we want to meet when the system is deployed is effectively reachable,” says Sylvain Loddo, ESA’s Galileo Ground Segment Manager.

“It was an intermediate step with a reduced part of the system to effectively give evidence that we are on track.”

On 12 March 2013, Galileo’s space and ground infrastructure came together for the very first time to perform the historic first determination of a ground location, taking place at ESA’s Navigation Laboratory in the ESTEC technical centre, in Noordwijk, the Netherlands.

From this point, generation of navigation messages enabled full testing of the entire Galileo system. A wide variety of tests followed, carried out all across Europe.

“ESA and our industrial partners had teams deployed in the field continuously for test operations,” adds Marco Falcone, ESA’s Galileo System Manager.

Many terabytes of IOV data were gathered in all

“More than 10 000 km were driven by test vehicles in the process of picking up signals, along with pedestrian and fixed receiver testing. Many terabytes of IOV data were gathered in all.”

Test results

The single most important finding from the test results? Galileo works, and it works well. The entire self-sufficient system has been shown as capable of performing positioning fixes across the planet.

Galileo’s observed dual-frequency positioning accuracy is an average 8 m horizontal and 9 m vertical, 95% of the time. Its average timing accuracy is 10 billionths of a second – and its performance is set to sharpen as more satellites are launched and ground stations come on line.

For Galileo’s search and rescue function – operating as part of the existing international Cospas–Sarsat programme – 77% simulated distress locations can be pinpointed within 2 km, and 95% within 5 km.

All alerts are detected and forwarded to the Mission Control Centre within a minute and a half, compared to a design requirement of 10 minutes.

we are at a par with the best international systems of navigation in the world

“Europe has proven with IOV that in terms of performance we are at a par with the best international systems of navigation in the world,” comments Didier Faivre, ESA Director of Galileo and Navigation-related Activities.

Galileo and the UK
The UK has made a considerable investment in the Galileo project and is involved at every level in developing this next generation of satellite navigation technologies. Visit our Galileo missions page to find out more.

Headlines