Asian Surveying & Mapping
Breaking News
Australian spacetech companies partner to deliver the world’s first on-demand satellite imaging platform.
Over the course of several decades, satellite imagery has...
Singapore boosts geospatial property collaboration
The Singapore Land Authority (SLA) has signed memoranda of...
Esri India partners with AGNIi (Invest India) to roll-out ‘GeoInnovation’
Empowering start-ups to build location Intelligence and facilitate wider...
‘ISRO gearing up for multiple space missions in 2022’
After a rather muted 2021 in terms of satellite...
Australian company develops system for real time mapping of wildfires
At Wildfire Today we have often advocated for what...
Israel awards nearly $6 million in grants to space tech startups
From growing super-vegetables in space to taking high-resolution images...
Modi Govt’s ‘Urban Geospatial Data Stories Challenge’ To Promote Innovation Begins
The Union Housing and Urban Affairs Ministry said that...
Ethiopian Government to Merge the Ethiopian Space Science and Technology Institute and Ethiopian Geospatial Information Institute
In November 2021, the Ethiopian House of People’s Representatives...
Iran Slaps Down US ‘Concerns’ Over Space Programme After Satellite Launch
Iran launched a rocket carrying three satellites into space...
Russia and China Ink Cooperative Deal on Respective GNSSs
Russian space agency Roscosmos and the Chinese Satellite Navigation...

August 24th, 2013
New World Gravity Map at Highest Resolution

Associate Professor Michael Kuhn, of the Department of Spatial Sciences, contributed to the project through his skills in global gravity modelling, made possible through software he has been developing over the past 15 years.

“My research for the past 15 years has developed computational techniques and tools for forward gravity modelling,” Associate Professor Kuhn said. “I have previously applied these techniques successfully to reveal fine structures of the gravity field over Australia.

“Now, with the aid of the supercomputing facilities operated by Western Australian supercomputing leader iVEC, I was able to transfer this work to a global scale for the WGM. At iVEC, I completed the intensive calculations for more than 230 million points in under four weeks by dividing the overall task into 672 separate computational jobs. Doing this huge task on a standard desktop computer would have taken almost six months to complete.”

The WGM will allow scientists and educators to understand the structure of the Earth in far greater detail than ever before, essentially being able to see the Earth ‘from the inside’.

“The WGM will have practical applications in many important areas,” Associate Professor Kuhn said. “In geophysics, for example, large resource deposits can be identified more accurately, with increased gravity showing possible high-density ore bodies. It will also greatly benefit the field of spatial sciences, where instrumentation needs to be very accurately oriented with respect to the Earth’s gravity.

“By being global and ultra-high resolution, the map enables a focus on global and regional as well as very localised and targeted areas.”

The WGM project was led by the Bureau Gravimetrique International and involved significant contributions from institutions around the world, including United Nations Educational, Scientific and Cultural Organization (UNESCO). 

Associate Professor Kuhn’s contribution to the WGM was funded by the Australian Research Council and Curtin through a Curtin Research and Teaching Fellowship.