Asian Surveying & Mapping
Breaking News
First European satellite with AI set for launch
CubeSats are getting clever. These shoe-boxed sized craft are...
India’s Drone-Powered Digital Maps Project Begins In Maharashtra, Karnataka, Haryana
The Survey of India, with support from Department of...
China Launches Earth-Observing Satellites, Solar Sail Experiment
Two Earth-imaging satellites and an experimental solar sail payload...
Geospatial Policy Safeguarding Abu Dhabi’s Environment
Providing a single source of accurate, reliable environmental information...
India initiates drone-powered digital maps project
The government-owned organisation, Survey of India (SOI), with support...
Drone flying in Marunouchi, Tokyo
Tokyo – Japan-headquartered Terra Drone Corporation, one of the...
Terra Drone demos safe use of UAVs with Mitsubishi Estate for urban area logistics and security in Tokyo
Tokyo – Japan-headquartered Terra Drone Corporation, one of the...
China hands over Zimbabwe’s arable land distribution data in scientific research cooperation
HARARE - The Chinese Academy of Sciences (CAS) handed...
India Just Found Its Lost Vikram Lander on the Moon, Still No Signal
India's Chandrayaan-2 orbiter circling the moon has spotted the...
Chandrayaan 2 orbiter is healthy and safe in the Lunar orbit, says ISRO
The Chandrayaan-2 orbiter is healthy and safe in the...

July 19th, 2013
Wildfires Causing Melting in Low-Lying Himalayan Glaciers

In addition to the Indian study, a new study conducted by researchers at the Los Alamos National Laboratory has found that climate models have underestimated the contribution of wildfires to global warming.  Existing climate models assume that wildfires emit a mixture of warming black carbon particles along with organic carbon, thought to cause cooling by reflecting sunlight.  The combination and ratio of the two types of particles was thought to cause net cooling or a neutral climate effect.

The researchers, who began looking at wildfires after the 2011 Las Conchas fire threatened their own laboratory, found that wildfires also emit tiny, black balls of tar, at a rate ten times higher than these other particles.  Further the black and organic carbon emitted by the fires are covered in an organic coating which acts like a lens to focus sunlight, increasing the warming by a factor of 2 or more.

A series of studies led by Dr. V. Ramanathan of Scripps Institute of Oceanography have also found that that co-called brown carbon has a more a potent warming impact than many models account for, offsetting up to 60 to 90% of the cooling caused by other lighter organic carbons.  Based on recent field studies Dr. Ramanathan and co-researchers estimate that the warming contribution of brown carbon causes organic carbon’s net impact to be close to zero, meaning that it does not offset the warming caused by co-emitted black carbon, which has been estimated to be the second most powerful climate forcer, behind only CO2.

“The combination of these findings has important implications for climate models and climate mitigation,” said Durwood Zaelke, President of the Institute for Governance & Sustainable Development. “Wildfires and agricultural burning in Africa, Asia, and South America, once thought to have little or no effect on the climate may contribute significantly to global warming.”

“Wildfires are only expected to increase as the climate warms,” added Zaelke.  “So urgent action to reduce the rate of warming immediately can contribute to limiting such positive feedbacks, where the consequences of increased warming, such as forest fires, themselves increase warming.

The Divecha Centre study is here.
The Nature Communications study is here.
IGSD’s Primer on Short-Lived Climate Pollutants is here.