Asian Surveying & Mapping
Breaking News
European aerial surveying industry gathered at the 2022 EAASI Summit
More than 70 members of the aerial mapping industry...
China releases report on remote sensing monitoring for global ecology
BEIJING - China's Ministry of Science and Technology issued...
Singapore launches Environmental Services Industry Transformation Map, to create more than 1,600 PMET jobs by 2025
With a total of 23 Industry Transformation Maps to be...
China builds new dam in Tibet near Indian border
In a development that is a matter of concern...
Abu Dhabi’s Bayanat more than doubles 2022 net profit on revenue boost
Bayanat, a geospatial data products and services provider which listed...
Esri India Inks MoU with TEXMiN – IIT (ISM) Dhanbad
Esri India, the country’s leading Geographic Information System (GIS)...
China forms all-weather remote sensing monitoring system for all waters, islands: top aerospace authorities
China’s space technology was deeply applied in the country’s...
EU and Japan to improve Earth observation data through Copernicus
As part of a recent agreement, Japan will provide...
Indonesia deploys first student satellite through KiboCUBE programme
VIENNA - Indonesia has successfully deployed its first student...
Joshimath Crisis: ISRO Satellite Images, Reports Show How the Entire Town is at the Brink of Collapse
An eerie silence prevails over the small town of...

December 5th, 2012
Third Galileo Satellite Begins Transmitting Navigation Signal


The third Galileo Flight Model, known as FM3, transmitted its first test navigation signal in the E1 band on 1 December, the band being used for Galileo’s freely available Open Service interoperable with GPS.Then, on the morning of 4 December, the satellite broadcast signals across all three Galileo bands – E1, E5 and E6.

Galileo is designed to provide highly accurate timing and navigation services to users around the world. So the testing is being carried out in addition to the standard satellite commissioning to confirm that the critical navigation payloads have not been degraded by the violence of launch.  

While the satellites are run from Galileo’s Oberpfaffenhofen Control Centre near Munich in Germany and their navigation payloads are overseen from Galileo’s Mission Control Centre in Fucino, Italy, a separate site is used for the in-orbit testing.

Located in the heart of Belgium’s Ardennes forest, Redu is specially equipped for Galileo testing, with a 15 m-diameter S-band antenna to upload commands and receive telemetry from the satellite, and a 20 m-diameter L-band dish to monitor the shape and quality of navigation signals at high resolution.

“This marked the very first time that a Galileo payload was activated directly from ESA’s Redu centre in Belgium,” explained Marco Falcone, overseeing the campaign effort as Galileo’s System Manager. 

“We have now established an end-to-end setup in Redu that allows us to upload commands generated from Fucino’s Galileo Control Centre to the satellite payload whenever the satellite passes over the station, while at the same time directly receiving the resulting navigation signal through its main L-band antenna.

“The result is our operations are much more effective, shortening the time needed for payload in orbit testing.”

Operating at an altitude of 23 222 km, the Galileo satellites take about 14 hours to orbit our planet, typically coming into view of Redu for between three to nine hours each day.

The fourth Galileo flight model, FM4, was launched together with FM3 on 12 October. The two satellites shared the same Soyuz launcher from French Guiana.

Both have now been manoeuvred into their operational orbits: at the same altitude but in a different orbital plane to the first two Galileos, launched in 2011, in order to maximise the global coverage.

Now that FM3’s payload has been activated, FM4 is set to begin transmitting test navigation signals later this month. The first two satellites have already passed their in-orbit testing.