Asian Surveying & Mapping
Breaking News
Government is working towards harnessing space technology for development – Bawumia
Government will soon pass the Ghana Space Policy to...
Chinese satellite propulsion startup secures funding as country’s constellation projects grow
HELSINKI — A Chinese satellite electric propulsion company has...
Hancom to launch S. Korea’s first private satellite for integrated image analysis service
SEOUL -- South Korea's first private satellite for earth...
Israel to invest NIS 600 million in spacetech R&D
The Israel Space Agency and Innovation Authority want to...
China’s iSpace Suffers Third Consecutive Failure of Hyperbola-1 Rocket
Friday the 13th was an unlucky day for Chinese...
ISRO is planning a mission to capture the effects of space weather events on Earth’s atmosphere.
The Indian Space Research Organization (ISRO) has proposed a...
Virgin Orbit to launch Japanese satellite
Virgin Orbit will launch a satellite into space for Japanese...
Plans Unveiled To Better Connect Space Industries In Scotland And The UAE
Edinburgh, Dubai - Globally focused strategic space marketing firm...
UAE, Rwanda sign economic and technical cooperation agreement
Sheikh Shakhboot Bin Nahyan Bin Mubarak Al Nahyan, Minister...
XAG promotes drones in Vietnam to boost rice farming while cutting fertilizer use
CAO LANH, Vietnam - As the monsoon season starts...
Dinosaur Footprint

Since GPS data are imprecise, other more specialised devices and techniques are also required. The highest resolution data are gathered by a modified photomapping technology called Sirovision and extensions to some commercial packages. These data can be used to generate high-quality 3D outputs of the subject providing sub-millimetre scale models of footprints.

On a larger scale, Assoc. Prof. Hacker scans the tracks using a specially equipped low-flying aircraft, soaring just 10 m over the rock platforms. The aircraft captures mapping data (high-resolution photos, video, and lidar imagery) as it flies overhead. The data captured by this aircraft can be georeferenced with those from the Sirovision device, enabling data of different scales and resolutions to be integrated.

And on the ground, the Zebedee handheld lidar maps the environment as you walk. You simply meander through a site holding Zebedee as it beams out 2D ‘sheets’ of laser up to 15 metres into the environment. As it does so, it eagerly rocks back and forth on a spring, making those 2D sheets of information overlap again and again to form a dense and accurate 3D map of the environment. Zebedee initially arose from research into 3D mapping for autonomous robots. The team has also used a drone to map the prints from above, a perspective on the animals’ movements impossible from human height.

The tides along the coastline are extreme, at some points drawing back 10 metres down the rock platform before creeping back again. The team must do their work in just a few hours before the tides rise up.

As well as recreating the tracks with high fidelity, Zebedee and the other tools and techniques are integral for preserving these wonders. The tracks are ephemeral and are constantly being eroded by the relentless sea. “A number of tracks that we have documented last year have disappeared as a result of sand movements during the 2014-15 storm,” said Steve.

The Walking with Dinosaurs project is science at its finest: palaeontological rigour, traditional insight, and sophisticated aircraft and imaging equipment. By using these cutting-edge technologies, scientists are simultaneously preserving and recreating an ancient world that would be otherwise unimaginable.

Visit this page for more details and images.