Asian Surveying & Mapping
Breaking News
Australian Space Agency funds development of aerospace-grade GNSS receiver
The Australian Space Agency has funded the development of...
Continuity risks for Australian EO data access
A new report details the widespread use of Earth...
China launches new remote sensing satellite
JIUQUAN, April 15 (Xinhua) -- China on Monday launched...
7.4-Magnitude Earthquake Strikes Taiwan
A major, 7.4-magnitude earthquake struck the eastern coast of...
Tata Deploys Its Geospatial Satellite In Space on Space X’s Falcon 9 Rocket
THIRUVANANTHAPURAM: Tata Company launched India's first private commercial satellite...
Taiwan’s Formosat-8 Satellite Set for Launch by 2025
The Taiwan Space Agency has announced progress on the...
Iranian Scientists to Build Satellite Constellation for 2 Simultaneous Missions
The scientists at the knowledge-based company had previously succeeded...
China provides geospatial intel and other military support to Russia, US says
The US has warned its European allies that China...
Japanese lunar lander company ispace raises $53.5 million in stock sale
WASHINGTON — Japanese lunar lander developer has raised $53.5...
Esri and Prince Sultan University Advance GIS Education Through Strategic Partnership
Memorandum of Understanding with Institution Enhances GIS Curriculum and...

October 10th, 2017
Orbit Logic Awarded Navy Autonomy Contract

GREENBELT, MD  – Orbit Logic has teamed with the University of Colorado Boulder’s Research and Engineering Center for Unmanned Vehicles (RECUV) on a Phase I Small Business Technology Transfer (STTR) contract sponsored by the Office of Naval Research (ONR) to develop a hierarchical autonomous mission planning and execution capability for Autonomous Underwater Vehicles (AUVs) that will address many of the challenges associated with long duration operations.  Orbit Logic and CU Boulder have teamed on this STTR to research solutions that could significantly advance the state-of-the-art in the composition, deployment, and real-time adaptability of Autonomous Underwater Vehicle collaborative sorties. We are leveraging prior work in the Unmanned Aircraft Systems (UAS) and Satellite Onboard Autonomy research areas to address the challenges of this maritime-related topic.

 

The research will innovate approaches to the exchange of information between collaborating vehicles that enables onboard decision-making to perform effectively despite the communication limitations imposed by the underwater marine environment. This will be accomplished through the leveraging and integration of several key technologies. The first is the employment of a novel decentralized data fusion approach to maintain the collective state awareness of a group of federated collaborating assets. This capability intelligently exchanges data (or strategically withholds data exchange) to minimize communications while maximizing distributed knowledge. Secondly, we will employ “resource ferrying” strategies to optimize collaborative operations for energy consumption. This technique, applicable to homogeneous or heterogeneous systems, has promise to significantly improve the overall effectiveness of long duration missions by intelligently distributing data, processing, and stored electrical energy. Additionally, autonomous decision logic strategies leveraged from synergistic satellite autonomy research will overlay the data architecture. Research will determine the most compact representation of asset information necessary to achieve robust, real-time adaptive mission performance. We will investigate the application of these technologies to “Pods” of cooperating heterogeneous AUV assets, assessing the mission effectiveness and resilience that might be gained.

 

Orbit Logic Incorporated (www.orbitlogic.com), specializes in software for mission planning, scheduling, and space situational awareness. Orbit Logic’s operationally proven software products – Collection Planning & Analysis Workstation, STK Scheduler, Order Logic Web App, Onboard Autonomous Planning System, and SpyMeSat mobile app – create better plans faster with fewer resources, more insight, and less risk. Our highly configurable desktop, web, mobile, and onboard software supports analysis and operations for domains including aerial/satellite imaging and space/ground networking.

 

The Research and Engineering Center for Unmanned Vehicles (RECUV) at the University of Colorado Boulder is a university, government, and industry partnership that collaborates to design, develop, and implement new technologies that will enhance the communications, mobility, and overall performance of unmanned vehicle systems. The center addresses the technical challenges associated with unmanned vehicles by integrating the traditional aerospace disciplines of aerodynamics, structures, navigation, control, and vehicle design with telecommunications, sensors, networks, and robotics.