Asian Surveying & Mapping
Breaking News
China Launch New Satellite into Space to ‘Spy on Earth’ in Bid to Match US Military
The move comes as China looks to expand its...
Google Maps Back in China After Eight Years
Google has set up a China-specific version of the...
Indian Launch for British Colour Video Earth Observation Prototype
The satellite, known as CARBONITE-2 by its builder, Surrey...
India Launches 31 Satellites in Single Mission
NEW DELHI - India Friday launched 31 satellites in...
Pakistan Alleges India Using Satellites for Military Purposes
Islamabad- Pakistan on Thursday alleged that India's plan to...
1Spatial Wins USD766,000 US Contract For Geographic Information System
LONDON  - Geospatial software and solutions company 1Spatial PLC...
Baidu Unveils Apollo 2.0 at CES 2018: More Mapping, More Test Drives, and Udacity Partnership
Baidu just announced the second version of its Apollo...
First Chinese launch of 2018 puts two SuperView-1 observation satellites into low Earth orbit
China on Tuesday carried out its first launch of...
Indian Railways to Deploy Drones for Project Monitoring
India: The Indian Railways has decided to deploy drones...
Joint Venture With Japan Could Yield Connectivity Through High-Altitude, Solar-Powered Drone
A high-altitude pseudo-satellite (HAPS) is a category of unmanned...

February 17th, 2017
Geoscience Australia, Lockheed Collaborate on Multi-GNSS SBAS Research

Geoscience Australia, an agency of the Commonwealth of Australia, and Lockheed Martin have entered into a collaborative research project to show how augmenting signals from multiple GNSS constellations can enhance positioning, navigation and timing for a range of applications.

Other partners are Inmarsat and GMV.

The research project aims to demonstrate how a second-generation Satellite-Based Augmentation System (SBAS) testbed can — for the first time — use signals from both GPS and the Galileo constellation, as well as dual frequencies, to achieve greater GNSS integrity and accuracy.

Over two years, the testbed will validate applications in nine industry sectors: agriculture, aviation, construction, maritime, mining, rail, road, spatial and utilities.

To improve precision navigation, a second-generation SBAS will use signals from both GPS and Galileo, and dual frequencies, to achieve even greater GNSS integrity and accuracy.

To improve precision navigation, a second-generation SBAS will use signals from both GPS and Galileo, and dual frequencies, to achieve even greater GNSS integrity and accuracy.

In January, the Australian Government announced $12 million in funding for the trial of SBAS technology.

“Many industries rely on GNSS signals for accurate, safe navigation. Users must be confident in the position solutions calculated by GNSS receivers. The term ‘integrity’ defines the confidence in the position solutions provided by GNSS,” says Vince Di Pietro, chief executive of Lockheed Martin Australia and New Zealand. “Industries where safety-of-life navigation is crucial want assured GNSS integrity.”

Ultimately, the second-generation SBAS testbed will broaden understanding of how this technology can benefit safety, productivity, efficiency and innovation in Australia’s industrial and research sectors, according to Lockheed.

“We are excited to have an opportunity to work with Geoscience Australia and Australian industry to demonstrate the best possible GNSS performance and proud that Australia will be leading the way to enhance space-based navigation and industry safety,” Di Pietro adds.

Basic GNSS signals are accurate enough for many civil positioning, navigation and timing users. However, these signals require augmentation to meet higher safety-of-life navigation requirements. The second-generation SBAS will mitigate that issue.

Once the SBAS testbed is operational, basic GNSS signals will be monitored by widely-distributed reference stations operated by Geoscience Australia. An SBAS testbed master station, installed by teammate GMV of Spain, will collect that reference station data, compute corrections and integrity bounds for each GNSS satellite signal, and generate augmentation messages.

“A Lockheed Martin uplink antenna at Uralla, New South Wales, will send these augmentation messages to an SBAS payload hosted aboard a geostationary Earth orbit satellite, owned by Inmarsat,” says Rod Drury, director of international strategy and business development for Lockheed Martin Space Systems Co. “This satellite rebroadcasts the augmentation messages containing corrections and integrity data to the end users. The whole process takes less than six seconds.”

By augmenting signals from multiple GNSS constellations — both Galileo and GPS — second-generation SBAS is not dependent on one GNSS. It will also use signals on two frequencies — the L1 and L5 GPS signals, and their companion E1 and E5a Galileo signals — to provide integrity data and enhanced accuracy for industries that need it.

Research partners

Lockheed Martin will provide systems integration expertise in addition to the Uralla radio frequency uplink. GMV-Spain will provide its magicGNSS processors. Inmarsat will provide the navigation payload hosted on the 4F1 geostationary satellite. The Australia and New Zealand Cooperative Research Centre for Spatial Information will coordinate the demonstrator projects that test the SBAS infrastructure.

Lockheed Martin has significant experience with space-based navigation systems. The company developed and produced 20 GPS IIR and IIR-M satellites. It also maintains the GPS Architecture Evolution Plan ground control system, which operates the entire 31-satellite constellation.